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a b s t r a c t

Electroencephalogram (EEG) is a noninvasive method to detect spatio-temporal electric signals in
human brain, actively used in the recent development of Brain Computer Interfaces (BCI). EEG’s
patterns are affected by the task, but also other variable factors influence the subject focus on the
task and result in noisy EEG signals difficult to decipher. To surpass these limitations methods based
on artificial neural networks (ANNs) are used, they are inherently robust to noise and do not require
models. However, they learn from examples and require lots of training data-sets. This will increase
costs, need research time and subjects effort. To reduce the number of experiments necessary for
network training, we devised a methodology to provide artificial data from a limited number of
training data-sets. This was done by applying Empirical Mode Decomposition (EMD) on the EEG frames
and intermixing their Intrinsic Mode Function (IMFs). We experimented on motor imagery (MI) tests
where participants were asked to imagine movement of the left (or right) arm while under EEG
recording. The EEG data were firstly transformed using the Morlet wavelet and then fed to an originally
designed Convolutional Neural Network (CNN) with long short term memory blocks (LSTM-RNN). The
introduction of artificial frames improved performances when compared with standard algorithms.
The artificial frames become advantageous even when the number of available real frames was only
of 7 or 8. In a test with two subjects (200 recordings for each subject), we reached an accuracy better
than 88% for both subjects. Improvements due to the artificial data were especially noticeable for the
under-performing subject, whose EEG had lower accuracy. Imagination recognition accuracy was about
89% with 360 training frames, in which 300 were artificially created starting from 60 real ones. We
believe this methodology of synthesizing artificial data may contribute to the development of novel
and more efficient ways to train neural networks for brain computer interfaces.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

Brain computer interface (BCI) devices provide means to send
ommands of various complexity to computers without using
ny verbal or tactile actions. These systems, like many others
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(e.g., fNIRS, ECoG, etc.) are able to read brain signals and recog-
nize specific commands. In simple words, a BCI device connects
between the user and the actual machinery with using brain
signals. A BCI apparatus helps people with handicaps, it may also
contribute to the realization of devices with applications in a
multitude of fields [1–3].

However, brain signals are generated by the electric activity
of billions of neurons firing in a random, uncorrelated manner.
The signals are tiny in intensity (few microvolts) and of low fre-
quency, thus they are difficult to analyze and classify. Moreover,
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o assign meaning to specific EEG events, we have to understand
ubjects differences and variability within same subjects [4].
In this sense, it is very important to realize a reliable and

obust algorithm able to recognize and classify properly EEG
atterns. Most used in the past are linear classifiers, like linear
iscriminant analysis (LDA), regularized LDAs and support vec-
or machines (SVMs) that generally outperforms other classifiers
5–7]. Recently, artificial neural networks (ANNs) emerged as
seful classifier, because they are characterized by robustness to
oise. When properly trained, they can overcome subject variabil-
ty and can adapt to extremely non-linear behavior [8]. However,
o be used for brain–computer interfaces, ANN should be trained
abeling each EEG pattern to the correct mental state in order
o obtain the optimal ANN response [9,10]. The necessity of a
reat amount of calibration data makes the training of ANNs
nconvenient, especially when dealing with subjects of age or
ith disabilities. Generating artificial data by randomly sampling
he available dataset is a possible strategy [11].

In this study we propose a new method that uses a Convo-
utional LSTM network to analyze EEG patterns with a reduced
umber of training sets. The subjects are asked to imagine move-
ent of the left or right hand (motor imagery tests) while EEG
re being recorded for two seconds. Each of these training set is
abeled accordingly and used for the network learning phase. We
eveloped an original method to synthesize artificial training data
tarting from a limited number of real tests on the subjects and
hen using empirical mode decomposition [12,13] (EMD), mixing
n an opportune way the data intrinsic mode functions (IMF) as
escribed in details in Section 2.3.
The imagination of a motor action can induce recognizable

rain signals. If we analyze the spectral content, we notice the
mergence of recognizable frequencies in correspondence to par-
icular mental states [14]. For example, θ rhythm (4–7 Hz) is
ound during sleep and low brain activities and β rhythm (13–
5 Hz) in alertness and motor activity. Brain waves show not only
hythmical patterns, but have also more structured behaviors.
or instance, in preparation of a motor action, frequencies slowly
educe in amplitude. These frequencies show dynamical prop-
rties. The recall of cognitive event, emotional events or motor
ctions can accelerate/decelerate or suppress/enhance α and β

rhythms [15] in a complex way, the phenomenon is called event
related de-synchronization. Experiments confirm that even the
simple perception of a motor action performed by a third person,
can result as suppression of β waves [16] in the EEG signal.
Electroencephalogram events are mapped to specific areas of the
brain. For example, different body movements result to signals in
localized in regions of various shape and extensions on the skull.
The area related to hand movements is especially large and easy
to map with EEG. For this reason, many imagery EEG experiments
are done asking subjects to imagine motor actions involving their
hands or arms. One of the main difficulties in detecting correctly
EEG signals is noise filtering. An approach is to firstly filter each
EEG channel with a band-pass, then a spatial filter is applied,
the cluster obtained are projected on positions on the skull to
be identified. This method, or those derived from it, are called
common spatial pattern (CSP) technique [9]. They are widely used
to reduce noise, but noticeably the band-pass filtering used are
obtained by trial and error in a case-by-case fashion.

2. Methods

As mentioned above, in this study we want to improve previ-
ous methodologies using highly adaptable, robust to noise and
trainable convolutional neural networks (CNN) [17], structured
with convolution layers, pooling layers and rectification layers.
The input of the net at a certain instant is the EEG voltage,
 l

2

Fig. 1. The sketch of the structure of the CNN used. Inml represents the image
(or frame) extracted from the EEG potential data, n and m are coordinates on
the scalp and l is the frame number. The array W is the convolution filter,
it is smaller and have three components x, y and l. The first two are spatial
components running over the wider range n and m. The latter l represents the
time (frame). This operation extracts the features associated to the filter Wxyl .

Fig. 2. A batch of time dependent EEG data are filtered by a convolution layer
(see Fig. 1), the resulting frame is reduced in size by pooling the maximum
value for each four adjacent data as in this simple sketch.

structured in an N × M grid where N and M represent, loosely,
he coordinates along the scalp. In this way, we can interpret the
EG data at a certain instant of time as an image, or frame, of
ize N × M . Since our data are time series coming from multiple
EG channels, we have a multidimensional input that is of size
×M × L, where L is the frame number (trials), in a certain EEG
ata batch.
The convolution process filters each of these L images with a

ilter W that runs over the N and M coordinates. The size of the
ilter is X by Y by the frame number L. The operation results in a
ew array Oij given by the expression:

ij = ΣxΣyΣlWxylI(i+x−1)(j+y−1)l + b (1)

The array Oij represents the EEG signal map, convoluted with
the filter W and integrated along all the frames available in
the particular data batch. The data size and CNN structure are
introduced in Table 1. This can be called the feature map due to
he filter W . See Fig. 1 for a simple schematic representation of
he convolution process (the filter W is optimized in order to
obtain the best classification performances, in other words the
filter is actually a variable).

The Oij frame is as large as the original data, a pooling layer in
he network is introduced to reduce the size of it. We used the
ax pooling procedure, each four adjacent data in the frame is
ubstituted by one single data corresponding to the maximum of
he four (see Fig. 2).

For better optimization with only positive numbers, a rectified
inear unit (ReLU) layer is added. This operator simply sets any
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Fig. 3. In panel (a) the scheme of the LSTM block. A memory cell passes its value Ct to the next time step depending on calculations involving the values of the
ates f , i and z. In (b) the time explicit structure of the network.
o

A

negative values to zero and leave untouched all the other data.
With this configuration the network can learn to classify a special
set of training data. These are data that are EEG recordings from
subjects, with the correct left or right imagery label manually
inserted by a human.

2.1. The long short-term memory cell

The so called Long short-term memory (LSTM) [18] is a par-
ticular recurrent neural network (RNN) that is used to analyze
time series data. An RNN can memorize previous data in the time-
series and use them for the optimization process. Compared to a
simple RNN, a LSTM network has longer memorization time and
this results in successful applications to natural language process-
ing and speech recognition. It is widely used for time series and
signals processing. In this study we use a LSTM network with the
forget gate introduced by Gers [19].

Calling the input signal at time t as Xt , the corresponding LSTM
block output is ht . The latter depends not only on Xt but also on
the previous output ht−1. This is valid for all point in time Xt ,
Xt−1, Xt−2 etc. The LSTM block involves memory gates that have
a function to selectively pass information to neurons. During the
learning phase, the gates actually extend or shorten the memory
length to maximize the fit with the desired output.

The scheme of the LSTM block we used is as in Fig. 3(a).
The first output gate acts as a standard RNN network, so its

output is:

ot = σ (Woxt + Roht−1 + bo) (2)

where σ is a sigmoid function, Wo and Ro are weight arrays and
bo is a bias constant. The forget gate ft and the input gates it and
zt have similar structure:

ft = σ (Wf xt + Rf ht−1 + bf ) (3)

it = σ (Wixt + Riht−1 + bi) (4)

and

zt = tanh(Wixt + Riht−1 + bi) (5)

These three elements are connected to the memory cell ct through
lement-wise addition or multiplication modules as in Fig. 3. That
s:
t = it × zt + ft × ct−1 (6)

3

Fig. 4. The core structure of an artificial neural network. Layer (x−1) and layer
x are fully connected. The output of one layer becomes the input of the next.
The output O(x−2) of layer (x− 2) is the input of neurons in layer (x− 1) and so
n. Eq. (8) transfers values from one layer to the next through the weights Wij .

The function of the memory cell is to keep the ct value or not.
Depending on this decision ct−1 calculation is executed and finally
the output is:

zt = ot × tanh(ct ) (7)

s in any RNN the LSTM block acts on each Xt , as schematically
shown in Fig. 3(b).

2.2. Optimization

We use here a fully connected artificial neural network with
features extraction filters and memory blocks. The specific type
of memory we use is called long short-term memory (LSTM).
Hereafter we describe briefly some details about the structure of
our network.

The fully connected network is structured in layers. Within
each layer, neurons are not connected to each other. However
each neuron of the layer is feeding and receiving information to
all the neurons of the adjacent layers (Fig. 4). The output of each
layer is transferred to the next layer through the weights Wij. In
this way the output for the neuron i of layer x is:

Ox
i = L (Ixi ) (8)

where Ixi is the neuron activation ΣN
i W x−1

ij Ox−1
i −θ x−1

i . Here θ is a
threshold and N the number of neurons in the layer. The logistic
function L is 1

1+e−x .
The optimization of the weights Wij is obtained by the back-

propagation method [20]. The cost function that estimates the
error between a target Y and the actual output O is the cross
i i
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ntropy derived from the logistic regression theory [21]. For each
ayer x we define the cost as:

= −Σi[Y x
i lnO

x
i + (1 − Y x

i )ln(1 − Ox
i )] (9)

he new weights Wij are optimized by adding a small term
roportional to the gradient:

dE
dW x−1

ij

=
dE
dOx

i

dOx
i

dIxi

dIxi
dW x−1

ij

(10)

From Eq. (9) we can calculate these partial derivatives :

dE
dOx

i
= −

Y x
i

Ox
i

+
1 − Y x

i

1 − Ox
i

(11)

dOx
i

Ixi
= Ox

i (1 − Ox
i )

dIxi
W x

ij
= Ox−1

i

ultiplying these together few terms go away and finally we
ave:
dE

dW x−1
ij

= Ox−1
i (Ox

i − Y x
i ) (12)

e multiply this term by the logistic derivative (second in
q. (11)), so∆W x−1

ij will be bigger around the center and minimal
n the extremes of it:

W x−1
ij = −εOx−1

i (Ox
i − Y x

i )O
x
i (1 − Ox

i ) (13)

here ε is a variable learning rate given by:

= ε0
1

1 + βNe
(14)

ere ε0 is the initial learning rate and β the learning attenuation.
e are the epochs, the number of times the learning algorithm
ave to pass through the entire training dataset to update its
eights (an epoch can be divided in batches of data extracted
t random from the set).
To speed up the convergence we introduce a momentum [22,

3] term α. Overall, considering that

W x−1
ij = W x−1

ij (t + 1) − W x−1
ij (t)

at time step t the new W x
ij (t + 1) will be:

x−1
ij (t+1) = W x−1

ij (t)−εOx−1
i (Ox

i −Y x
i )O

x
i (1−Ox

i )+αW
x−1
ij (t) (15)

2.3. Empirical mode decomposition

To improve network training efficiency and reduce the num-
ber of tedious and time-consuming tests with humans, we cre-
ated artificial EEG frames from a number of real motor imaginary
experiments. Empirical mode decomposition has been used for
EEG signal processing [13]. We decomposed the EEG frames using
Empirical Mode Decomposition and created new ones intermix-
ing their intrinsic mode functions (IMF) [24]. A number of labeled
homogeneous EEG data are decomposed and randomly mixed,
creating new artificial data, each different from one another, but
still compatible to the same label because obtained from different
sets of the same motor-imagery contents.

The time series EEG(t) is decomposed in the sum of n intrinsic
mode functions and a trend component rn(t) as

EEG(t) = Σn
k=1IMFk(t) + rn(t) (16)

The main characteristics of the IMFk(t) function are that (1) the
difference between the number of peaks and the number of zero-
crossing points should be one or zero, (2) the envelope of the
peaks and minimum points on average should be zero.
 F

4

Fig. 5. The positions and channel naming of the 62 electrodes used in the
experiment.

2.4. Synthesis of artificial frames

We use the data obtained by Phan [25] on two subjects (S1
and S2) using an EEG of 62 electrodes placed like in Fig. 5. The
measure was made for two seconds, 200 times per subject. The
EEG sampling rate was set to 500 Hz, so each dataset was an array
of size 1000 × 62 (500 Hz for 2 s, 62 channels).

Of the 200 total datasets, we used 60 of them as training, and
the remaining 140 for validation. Since we intend to generate
artificial training data with our original method, we call these 60
datasets the real training set and the other that we will create
artificial training sets.

The artificial frames are constructed using an iterative pro-
cedure. As introduced above, firstly we decompose the original
signal EEG(t) in its empirical modes using the intrinsic mode func-
tion IMF (t) and the trend component rn(t) [12]. E is an operator
that does the spline interpolation of all the maxima and all the
minima of the signal and the apex T represents the transpose of
a vector, the decomposition is done accordingly to the following
steps:

1. A function s(t) = ri−1(t) is defined, i begins with i = 1 and
r0(t) = EEG(t).

2. Calculate the upper and lower envelopes (Eu
[s(t)], E l

[s(t)])
3. We define the average of the upper and lower envelope as

m(t) = (Eu
[s(t)] − E l

[s(t)])/2.
4. The intrinsic mode function (IMF) candidate h(t) is defined

as the difference between the average m(t) and the signal:
h(t) = s(t) − m(t).

5. s(t) is reassigned as s(t) = h(t) and the procedure returns
to point (2) until the ratio s(t)T s(t)

m(t)Tm(t)
reaches 40 dB.

6. Then the first intrinsic mode function IMFi(t) = h(t) is
found.

7. The residual is defined as the difference between the orig-
inal signal and the current IMF ri(t) = ri−1(t) − IMFi(t)

8. The procedure is repeated from (2) until the ratio
ri−1(t)T ri−1(t)

ri(t)T ri(t)
reaches 50 dB.

n this way the EEG(t) pattern is decomposed in n intrinsic mode
unctions plus a residual, as in Eq. (16). To create new artificial
EG frames, we choose random IMFs and use Eq. (16) to build
ew artificial frames. We have, of course, to mix frames belonging
o the same group of imagery data (left hand or right one). In
ig. 6 we show a simplified scheme of the procedure.
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2.5. Time resolved frequency analysis

EEG signals can be analyzed by their frequency and their
position in space. Since a simple Fourier analysis would critically
depend on the time-window length, we used a Morlet based
wavelet analysis. The so-called mother wavelet is a function that
s variable in shape, enlarging at low frequencies and getting
harper at higher. In this way the analysis is balanced and more
uitable for wide frequency range signals as our imagery EEG time
eries. The general wavelet form we used is the following:

ψ (a, b) =
1

√
a

∫
∞

−∞

s(τ )ψ∗(
τ − b

a
)dτ (17)

here b is the time reference and a is the scaling parameter. As
he mother wavelet function we use the Morlet function below:

Morlet (t) =
1

√
πβ

· ei2π fc t · e−
t2
β (18)

ere fc is the center frequency and β is the band width parameter.
he smooth shape of this function is typical of biological and
hysiological reactions, often used in brain research (see a plot
n Fig. 7).

.6. The convolutional neural network

We used two different network configurations in this study
17,26]. The first is a CNN network that categorizes the result
f EEG wavelet analysis, the second it is a Convolutional LSTM
etwork classifying the spectrum of the same EEG analysis [27]
see Fig. 8).

The CNN used is of the same structure as the one used by
won for the recognition and classification of emotions by elec-
roencephalographic analysis [28]. Before the signal is fed to
he network it is converted to its time–frequency distribution
TFD) described above. The conversion is done through Fourier or
avelet transformation where an 8–30 Hz spectrum is shown for
n interval of 2 s. Given our setup constraint of 500 Hz sampling
ate (corresponding to 2 ms integration time), we have chosen
0 samples to calculate each spectrum. Thus, each wavelet time-
indow has a duration of 40 ms and there are a total of 50
5

Fig. 7. The shape of the mother wavelet Morlet, Eq. (18), with fc = 1 Hz and
= 1 s2 .

f them (Fig. 9). Each time series is a 1000 points vector (2 s
f EEG recording at 500 Hz sampling rate). There are 62 EEG
hannels so the network input is a bi-dimensional array of size
2 × 1000. After the wavelet/Fourier transformation it becomes
23 × 50 × 62 three dimensional array that is fed to the CNN
etwork. The structure of the CNN network is given in Table 1.
In our network the kernel filter (that is the filter operating

n the input bidimensional array of data) is of size 3 × 5 with
× 1 stride size (the strides are the number of pixels by which

he kernel filter moves over the data, 1 × 1 means that the
ilter moves one step vertically and one horizontally) and has
00 filters. The pooling kernel is instead 3 × 3 with 2 × 2

stride size. The network used here has fewer layers than that
of Kwon [28], and a reduced number of layers improves com-
putational efficiency and this has no detrimental effects on our
study since we have a lower number of training data. After the
second pooling, the output is transformed to a one-dimensional
vector of length 3600. This is fed to a fully connected network
with two output. The two labels values are the vector [1, 0] or [0,
1], corresponding to the two motor imagery thought of moving
the right or left arm respectively. In the network training phase,
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w
e

Fig. 8. A simplified sketch of the CNN used in this study. The input is a three dimensional array in which the first dimension is the wavelet transformation output
is a vector of 23 values (8–30 Hz interval divided in 23 bins), the second is the number of time-windows (of 40 ms duration for a total of 2000 ms) and the third
the EEG channels on the scalp (Nch = 62 channels).
Fig. 9. The wavelet (top panel Fourier) transformation results in images of size 50 × 23. The normalized time-series is time-windowed in chunks of 40 ms duration,
ith 20 samples in each of them. The integration time is 2 ms (500 Hz sampling rate) and since the total recording time is of 2 s, there are a total of 50 time-windows,
ach corresponds to pixels on the horizontal axis. The transformation spectrum results in 23 points ranging from 8 to 30 Hz on the vertical axis.
Table 1
The CNN structure and data sizes as implemented with the KERAS library [29].
The bi-dimensional convolutional network output is filtered by a rectified linear
unit (ReLU) and fed to a pooling layer. The procedure is repeated and the result
is transformed in a flat vector with the Flatten operator. This vector finally is fed
to a regular ANN network composed by two densely connected layers rectified
by a ReLU unit. Weights are optimized using the Adam optimizer. The layer type
is a mnemonic and in parenthesis is the actual library function used.
Layer (type) Output shape

convolution_1 (Conv2D) (23, 50, 100)
activation_1 (ReLU) (23, 50, 100)
pooling_1 (MaxPooling2D) (11, 24, 100)
convolution_2 (Conv2D) (9, 20, 100)
activation_2 (ReLU) (9, 20, 100)
pooling_2 (MaxPooling2D) (4, 9, 100)
flatten_1 (Flatten) (3600)
layer_1 (Dense) (62)
activation_3 (ReLU) (62)
layer_2 (Dense) (2)
6

a function proportional to the output distance from these labels
will be used to optimize all the CNN network variable parameters.

To train the CNN network we used 60 of the 200 EEG recording
to create artificial training data. The remaining 140 measure-
ments were used for the network testing and validation. In a first
test, using 30 EEG measurements, we created two sets of 20 and
30 artificial training data for a total of 50 (30+20) or 60 (30+30)
training sets. In another test, the set of 60 EEG recording was
used to create sets of 120, 300 and 600 artificial data. The CNN in
this case was trained with a total of 180, 360 and 660 sets. Once
the training was complete, the CNN performance was tested and
validated for subject 1 and 2 using the 140 untrained recording.

2.7. CNN and LSTM network

With the single CNN structure it is not possible to enhance the
time dependence of the EEG signal, thus here we constructed an
enhanced CNN-LSTM hybrid network as shown in Fig. 10. For the

experiment we used the 45 EEG channels shown in Fig. 11. Like in
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Fig. 10. A sketch of the Convolutional LSTM used in this study.

Fig. 11. The 45 channels used in the CNN-LSTM experiments are shown with
he filled dots.

he previous CNN analysis, after the wavelet transformation, we
ave a tensor of dimension (23 × 50 × 45). The 45 channels are
patially organized in a (5 × 9) array (see Fig. 11). We have one of
his array for each of the 23 resulting frequencies and each of the
0 time-windows. The data tensor is of size (9 × 5 × 23 × 50).
n Fig. 12 is shown an example of one of the 5 × 9 EEG frames. In
he CNN+LSTM configuration, the first 40 ms chunk of input data
s given to the CNN and subsequently fed to the LSTM network.
he output of it is given to a standard fully connected ANN. Like
n the previous case, the network final layer is composed by two
eurons, one corresponds to the ‘‘left arm’’ movement label, the
ther for ‘‘right arm’’ one. The optimization process proceeds
ike in any CNN, updating the network weights accordingly to
n optimization algorithm. Once the network is optimized, we
valuate its performances with untrained input data and compare
he network output with the subject actual imagery label (see
able 2).
7

Fig. 12. An example of the normalized EEG input, organized in a (5 × 9) array.
hannel labels correspond to Fig. 11.

Table 2
Parameters we are using in our CNN+LSTM neural network.
Layer (type) Output shape

time_distributed_1 (Time Distributed) (50, 7, 3, 128)
time_distributed_2 (Time Distributed) (50, 2688)
lstm_1 (LSTM) (256)
dense_1 (Dense) (16)
activation_1 (Activation) (16)
dense_2 (Dense) (2)
activation_2 (Activation) (2)

Table 3
The accuracy for the CNN with a short time-window Fourier transformation
(STFT) and wavelet transformations with different fb . In gray the best results,
the three trials are performed with 60 training sets and 140 evaluation sets
(subject 1).

Accuracy for each trial Average

#1 #2 #3

fb = 1 87.9% 88.6% 88.6% 88.4%
fb = 2 88.6% 89.3% 88.6% 88.8%
fb = 3 88.6% 86.4% 88.6% 87.9%
fb = 4 90.0% 88.6% 85.0% 87.9%
fb = 5 90.0% 89.3% 87.1% 88.8%
fb = 6 88.6% 87.1% 88.6% 88.1%
STFT 81.4% 83.6% 86.4% 83.8%

3. Results

Firstly we compare the network accuracy for the CNN with
the time windowed Fourier transformation (short time Fourier
transformation, STFT) against the one with the wavelet with fb =

1 up to fb = 6. Training is done with 200 sets of imagery data, 140
are used for training and 60 are reserved for accuracy evaluation.
Results are shown in Table 3 for subject 1 and Table 4 for subject
2.

Noticeably, using wavelet transformation gives better accuracy
up to 5% for subject 1 and 1% for subject 2 (grayed in the tables).
We did not notice strong dependence on the parameter fb, so
hereafter, we use a network with wavelet spectral pre-processing
with fb = 6.

To test our CNN+LSTM network we firstly train the system
with 60 real EEG labeled data. Then we create 120, 300 and 600
artificial data with the methodology explained above and use
them again as training sets. In total, the network is trained with
180, 360 and 660 sets.

Then, we use from 6, 12 and 30 real EEG data to create artificial
frames in order to obtain a total of 60 training sets. We train the



K. Takahashi, Z. Sun, J. Solé-Casals et al. Applied Soft Computing 122 (2022) 108811

n
I
f
s
T

4

(
d
s
n
c
f
c
s
8
v
p
o
C
t
o
p

4

t
p
a
C
l
t
f
t
s
t
d
L
s
p

4

t

i

Table 4
The accuracy for the CNN with a short time-window Fourier transformation for
subject 2.

Accuracy for each trial Average

#1 #2 #3

fb = 1 85.0% 88.6% 85.7% 86.4%
fb = 2 85.7% 87.1% 85.0% 85.9%
fb = 3 87.1% 85.0% 87.9% 86.7%
fb = 4 87.9% 88.6% 85.7% 87.4%
fb = 5 86.4% 88.6% 85.7% 86.9%
fb = 6 85.7% 87.1% 87.1% 86.7%
STFT 86.4% 85.7% 87.1% 86.4%

CNN+LSTM network again with those. This procedure is done for
subject 1 and subject 2.

In the next four tables we compare the accuracy of a CNN
etwork with a CNN with a long short-term memory cell (LSTM).
n Tables 5 and 6 are shown the results for the bare CNN network
or subject one and two respectively. Then the same results are
hown for the CNN+LSTM network again for the two subjects,
ables 7 and 8.

. Discussion

We compared our results with the work of Cichocki and Phan
2010) where similar motor-imagery brain computer interface
atasets were classified using the CSP method, an advanced ten-
or decomposition approach [25]. We notice that the CNN+LSTM
etwork shows an increase of 5.18% for subject one and a de-
rease of 3.57% for the second subject. However, as it is evident
rom the results in Tables 5 and 6, when we add 600 artifi-
ial training data with our method the accuracy raises for both
ubjects. In particular, the accuracy of 88.21% for subject 2, and
9.46% obtained with subject1, are excellent values similar to pre-
ious motor-imagery results [25]. Compared to the CNN network
erformance, our proposed CNN+LSTM system increases accuracy
f 3.21% for subject one and 0.36% for subject two ( Table 9).
onsidering both our tests with CNN and CNN+LSTM, the addi-
ional EMD artificial data in the network training produce better
r, depending on subjects, slightly better accuracy compared to
ast literature accuracy on EEG motor-imagery tests.

.1. CNN and CNN+LSTM compared

In Fig. 13 we show the effect of our artificial frames on the
raining process, for both networks CNN and CNN+LSTM com-
ared. For subject one, the first 30 and 60 real EEG frames (zero
rtificial training sets) result in an increase for both CNN and
NN+LSTM models. However, with 30 frames CNN ha slightly
ess accuracy than CNN+LSTM and the opposite happens with 60
raining frames. A similar behavior is observed for subject two:
or 30 training sets CNN+LSTM has better performances, for 60
he CNN network improves and the two models have almost the
ame accuracy. We can say that for a low number of training data,
he CNN+LSTM performs better than the CNN, whereas when the
ata are abundant the two networks appear to be equivalent. The
STM memory appears to be critical when the training data are
carce, whereas this become unimportant when the training is
lenty.

.2. The dependence on training sets number

In Fig. 14 we show the CNN+LSTM accuracy response when
rained with an increasing number of real EEG frames.

Clearly the performance gets better with training, however the
mprovement is reduced for higher number of training frames.
8

Fig. 13. The effect of EMD frames on the CNN (light color) and CNN+LSTM
(dark color) networks. Accuracy compared for both subjects (see Tables 5–
8). The introduction of the LSTM produces improved precision in almost all
cases. On the vertical axis the accuracy is shown in percentage, averaged over
four experiments with identical conditions and different random seeds. On
the horizontal axis the numbers of total training frames are shown, below in
parentheses the numbers of artificial frames are included in the count.

Fig. 14. The accuracy of the CNN+LSTM network response in function of real
training data. The accuracy improves with the number of training sets, for
subject 1 this effect is especially dominant. Data are extracted from Tables 7
and 8 (no artificial data).

For both subjects we observe a lower accuracy when the net-
work training is scarce. Increasing the number of training set, as
expected, improves the overall accuracy, nevertheless it remains
noticeably lower for subject 1. Since for equal number of training
frames, the network does not perform equally with the two
subjects, we can speculate that subject 1 was distracted or less
focused on the task. In other words, he/her had other thoughts
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Table 5
Classification accuracy with a CNN network (subject 1). The simulation is repeated 4 times using different random
seeds. The number of real and artificial data are changed as in the table. The validation tests are done with 140
EEG recording. The grayed cell emphasizes the best accuracy.
Number of training data Accuracy of each validation Average SE SD

Real data Artificial data Total #1 #2 #3 #4

30 0 30 80.00% 80.71% 82.14% 78.57% 80.36% 1.29% 0.64%
30 20 50 83.57% 78.57% 82.14% 80.71% 81.25% 1.85% 0.92%
30 30 60 84.29% 85.71% 80.71% 83.57% 83.57% 1.82% 0.91%
60 0 60 88.57% 87.14% 88.57% 87.86% 88.04% 0.59% 0.30%
60 120 180 87.86% 89.29% 90.00% 88.57% 88.93% 0.80% 0.40%
60 300 360 87.86% 87.86% 87.86% 85.00% 87.14% 1.24% 0.62%
60 600 660 90.00% 90.00% 90.00% 87.86% 89.46% 0.93% 0.46%
Table 6
Classification accuracy with a CNN network (subject 2). Data are shown in the same fashion as Table 5.
Number of training data Accuracy of each validation Average SE SD

Real data Artificial data Total #1 #2 #3 #4

30 0 30 72.14% 70.71% 70.00% 70.00% 70.71% 0.87% 0.44%
30 20 50 76.43% 75.51% 75.71% 75.00% 75.66% 0.51% 0.26%
30 30 60 75.00% 72.86% 74.29% 72.86% 73.75% 0.93% 0.46%
60 0 60 85.71% 87.14% 87.14% 85.71% 86.43% 0.71% 0.36%
60 120 180 85.00% 87.14% 86.43% 85.71% 86.07% 0.80% 0.40%
60 300 360 87.14% 88.57% 87.86% 88.57% 88.04% 0.59% 0.30%
60 600 660 87.86% 88.57% 87.86% 88.57% 88.21% (a) 0.36% 0.18%
Table 7
Classification accuracy with Convolutional LSTM neural network (subject 1). The number of validation sets is 140.
The grayed cell emphasizes the best parameters. The data in bold are those used in the plot of Fig. 13.
Number of training data Accuracy of each validation Average SE SD

Real data Artificial data Total #1 #2 #3 #4

6 0 6 65.71% 67.14% 62.14% 64.29% 64.82% 1.85% 0.92%
12 0 12 75.00% 74.29% 78.57% 77.14% 76.25% 1.70% 0.85%
20 0 20 81.43% 82.14% 82.85% 78.57% 81.25% 1.63% 0.81%

30 0 30 81.43% 78.57% 81.43% 82.14% 80.89% 1.37% 0.69%

40 0 40 83.57% 83.57% 85.00% 85.00% 84.29% 0.71% 0.36%
6 44 50 65.71% 68.57% 65.71% 56.43% 64.11% 4.58% 2.29%
12 38 50 75.71% 78.57% 76.43% 77.14% 76.96% 1.06% 0.53%

30 20 50 85.00% 83.57% 83.57% 82.86% 83.75% 0.78% 0.39%

6 56 60 67.14% 63.57% 57.14% 59.29% 61.79% 3.86% 1.93%
12 48 60 78.57% 76.43% 78.57% 80.71% 78.57% 1.52% 0.76%
20 40 60 84.29% 82.86% 84.29% 80.71% 83.04% 1.46% 0.73%

30 30 60 85.71% 85.71% 86.43% 85.71% 85.89% 0.31% 0.15%

40 20 60 86.43% 86.43% 85.71% 86.43% 86.25% 0.31% 0.15%

60 0 60 86.43% 86.43% 85.71% 85.71% 86.07% 0.36% 0.18%
60 120 180 85.00% 87.86% 87.14% 86.43% 86.61% 1.06% 0.53%
60 300 360 90.71% 89.29% 88.57% 87.14% 88.93% 1.29% 0.64%
60 600 660 86.43% 85.71% 88.57% 88.57% 87.32% 1.28% 0.64%
that were perturbing the motor-imagery EEG patterns, this was
reflected on the network ability to recognize them (Fig. 14).

In Fig. 15 we plot the reciprocal of the training sets num-
er against the accuracy. For subject 1, there is a clear linear
orrelation, with regression coefficient of R2

= 0.97. In this recip-
ocal space, the negative inclination and position of the intercept
uggests the theoretical accuracy limit for an infinite number of
raining sets, for subject 1 this is about 87%. In the case of the
econd subject, we observe the same negative trend, however
inearity is less prominent, especially for the last two points of
he curve. Those correspond to tests with less training data where
he network seems to produce much better accuracy than with
ubject 1. However, considering only the first four points (more
han 20 training sets) the linear trend is clear, it shows a fit of
2

= 0.98 and an intercept of about 93%. This is suggesting a
etter accuracy for this subject in the theoretical case of a great
umber of training sets.
Using the same reciprocal plot, we can visualize the effect of

rtificial frames on the network accuracy (see Fig. 16). Here we
9

use an increasing number of real EEG frames used for training
the network and add a variable number of artificially generated
frames in order to reach a total of 60 training sets. The plot shows
the accuracy using only real frames with filled dots, and the
accuracy with the real and artificial ones with asterisks. Clearly,
the artificial frames enhance the overall accuracy of the network,
the only exception is when the number of real frames is very
small. The inversion point is indicated by the arrows (0.13–0.14
corresponds to about 7–8 frames). This inversion is expected
since the artificial frames are created from real EEG data. When
the number of those is limited, the new frames are synthesized
by a small number of intrinsic functions and the random mixing
these in the empirical mode decomposition presumably ends up
in reproducing a bad copy of the original EEG frames, actually de-
grading the network ability to classify properly the EEG patterns.
On the other hand, when the number of available real EEG frames
surpasses the threshold approximately indicated by the arrows,
the effect of the intrinsic mode functions intermixing begins to
introduce positive effects on the CNN’s classification ability.
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Table 8
Classification accuracy with Convolutional LSTM neural network (subject 2). The grayed cell emphasizes the best
parameters.
Number of training data Accuracy of each validation Average SE SD

Real data Artificial data Total #1 #2 #3 #4

6 0 6 83.57% 83.57% 86.43% 86.43% 85.00% 1.43% 0.71%
12 0 12 85.71% 85.00% 86.43% 83.57% 85.18% 1.06% 0.53%
20 0 20 84.29% 82.14% 86.43% 82.14% 83.75% 1.78% 0.89%

30 0 30 87.86% 86.43% 85.71% 86.43% 86.61% 0.78% 0.39%

36 0 36 90.71% 88.57% 87.86% 88.57% 88.93% 1.07% 0.54%
40 0 40 89.29% 88.57% 90.00% 90.00% 89.46% 0.59% 0.30%

30 20 50 87.14% 87.86% 87.14% 90.00% 88.04% 1.17% 0.59%

6 54 60 83.57% 78.57% 85.71% 85.00% 83.21% 2.79% 1.39%
12 48 60 90.00% 86.43% 87.14% 87.14% 87.68% 1.37% 0.69%
20 40 60 85.71% 87.14% 85.00% 83.57% 85.36% 1.29% 0.64%

30 30 60 88.57% 85.00% 86.43% 88.57% 87.14% 1.52% 0.76%

40 20 60 89.29% 90.00% 90.00% 89.29% 89.64% 0.36% 0.18%

60 0 60 89.29% 90.71% 91.43% 90.00% 90.36% 0.80% 0.40%
60 120 180 90.71% 89.29% 90.71% 90.71% 90.36% 0.62% 0.31%
60 300 360 90.00% 89.29% 90.71% 92.14% 90.54% 1.06% 0.53%
60 600 660 87.86% 84.29% 86.43% 86.43% 86.25% 1.28% 0.64%
Table 9
The comparison of our results with CSP method. The
CNN+LSTM approach improved the accuracy for both
subjects.
Method Accuracy

Subject 1 Subject 2

CSP 82.86% 90.00%
CNN 88.04% 86.43%
CNN + LSTM 86.07% 90.36%

Fig. 15. The network classification accuracy against the reciprocal of the number
of training sets. The intercept with the vertical axis indicates the theoretical
accuracy limit for an ideal infinite number of training sets. Subject1 seems to
converge to a maximum accuracy of about 87%–88%. However, the other subject
data show linearity only when the network is well trained. In fact the last
two points corresponding to 12 and 6 training sets only seem to depart from
linearity. The regression line excluding these two suggests a theoretical limit of
about 93%.

5. Conclusions

In this study we compared a convolutional neural network
CNN) and one with a long short-termmemory block (CNN+LSTM)
n the task of recognizing brain wave spatial–temporal patterns
n motor-imagery experiments. Because of the scarce availability
f real EEG recordings on human subjects, we proposed a method
10
to synthesize artificial EEG frames from subject’s real recording,
and evaluated the effect of them on the network performances.
The main findings of this study are the following:

• The CNN and CNN+LSTM networks we proposed performed
similarly or better than previous method used in literature
for the same motor-imagery tasks. In particular, our re-
sults compare well with CSP, having, depending on subjects,
similar or better results (Table 9).

• The convolutional network with long short-term memory
blocks (CNN+LSTM) improves results of a similar network
without the LSTM block. This is apparent especially when
the number of available training data is less (Fig. 13).

• The addition of artificial frames tends to improve the ac-
curacy of a CNN+LSTM network, and this improvement is
prone to reach a plateau for greater number of artificial
frames added (Fig. 13).

• The (accuracy) vs (reciprocal of training sets) space shows a
quasi linear behavior that can be used to infer the network
accuracy limits (Figs. 15 and 16).

Our study demonstrates for the first time that with a CNN+LSTM
network, it is possible to improve the EEG pattern recognition by
introducing artificial frames realized with intermixing intrinsic
mode functions in an empirical mode decomposition process.
This helps in better training neural networks for classification of
motor-imagery tasks, with less training sets and better accuracy.
Our work may pave the way for the realization of next generation
brain computer interfaces or other future devices that rely upon
brain-wave analysis.
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Fig. 16. A comparison of the CNN+LSTM network accuracy with and without artificial frames. The dotted line and ‘‘*’’ symbol display the accuracy when artificial
frames are used (S1+ and S2+). These are advantageous for both subjects, however improvement is especially noticeable for the subject whose EEG shows lower
accuracy (subject 1). In that case the artificial frames bring the network performance to the same level of subject 2 (>85% for 60 or more frames). The arrows indicate
the point where the use of artificial frames becomes advantageous, about 0.13–0.14, corresponding to more than 7–8 frames. On the horizontal axis we have the
reciprocal of the training set number from real data(1/6, 1/12, 1/20, 1/30, 1/40 and 1/60). The number of artificial frames added to those is enough to reach 60
frames in total with the exception of 60 real frames where we added 300 artificial ones (6+54, 12+48, 20+40, 30+30, 40+20 and 60+300). Data are extracted from
Tables 7 and 8.
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