
Vol.:(0123456789)1 3

Cognitive Computation 
https://doi.org/10.1007/s12559-022-10034-2

Heterogeneous Axonal Delay Improves the Spiking Activity 
Propagation on a Toroidal Network

Marcello Salustri1 · Ruggero Micheletto1 

Received: 3 December 2021 / Accepted: 26 May 2022 
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
Several studies have looked into how noise affects neural networks and actual brains as evidenced by transcranial random 
noise stimulation, which improves cognitive performance. This research aims to broaden this understanding by concentrat-
ing on the network structural heterogeneity realized by adding noise to a neural model network’s axonal propagation delay. 
We utilized the pyNEST neural network simulator to model a network of 400 artificial Izhikevich neurons connected by a 
folded von Neumann neighborhood to form a toroidal shape where axonal propagation noise simulates a variable spatial  
spacing between neurons. In this network only one neuron is regularly spiking at first because it is specifically stimulated by a 10mA  
external current, while all the other neurons have no external input and are stimulated solely by the activity of their neighbors. The  
forward propagation of the spiking wave from the original neuron to its neighbors, and then to distant nodes on the toroidal 
network, was investigated. For each simulation, we recorded the activity of all the network changing several parameters to 
verify differences of spike activity in different positions on the torus. By manipulating heterogeneity, we discovered that 
adding noise helps the signal reach distant neurons in 20% less time, compared to when there is no heterogeneity. We dem-
onstrated for the first time that structural heterogeneity in a neural network can favor the propagation of spiking waves. This 
result is in line with other findings that suggest that a certain level of noise is good for the brain, extending this concept to  
the network physical structure.
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Introduction

Modern neuroscience copes with the considerable develop-
ment of mathematical models describing the biological func-
tioning of dynamical systems resembling the brain. To the 
large amount of brain-related data accumulated over time, 
there has been a proportional engagement in mathematical 
computing simulation to repeat and match the experimental 
results [1]. Furthermore, the counterintuitive effect of sto-
chastic resonance plays a role in understanding how noise 
improves the performance of a system instead of reducing 
it [2].

In a larger perspective, the brain is a complex system 
whose signals transmissions take place in a noisy heteroge-
neous environment [3]. Several studies show how the pres-
ence of stochastic resonance provokes substantial improve-
ments in signal detection [4]. In this paper, hence, we want 
to contribute to this field, studying the spiking activity prop-
agation in a model network and finding a simple mathemati-
cal model explaining the mechanism for which the presence 
of heterogeneity [5] can improve the propagation of a signal 
within neurons. Noticeable examples are studies on transcra-
nial random noise stimulation (tRNS), where subjects are 
stimulated by large electrodes with weak random electric 
stimuli that actually improve their different motor, sensory, 
and even cognitive tasks [6].

In this paper, we focus on another type of noise: the heter-
ogeneity of inter-neuronal distance. In a real brain, neurons 
are not placed in a regular lattice, like in a crystalline struc-
ture. Instead their position is affected by a certain degree of 
randomness. Since in a model network, the distance between 
neurons is represented by the propagation delay, in this study 
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we identify how the increasing of noise in axonal propaga-
tion time decreases the time delay of signal transmission 
through a simple network model of 400 neurons. Particu-
larly, using an Izhikevich neuron model implemented on a 
toroidal framed network [7, 8], we investigate the different 
time delays of a signal traveling across the network while 
the system is undertaken to different heterogeneity levels 
through axonal delay manipulation. The heterogeneity has 
been implemented by using a uniformly distributed noise 
parameter. Neurons in the brain deal with information in 
confined areas, which generally are named and classified 
depending on their function. These areas, however, do not 
have defined ends or borders. In this sense, the choice of a 
torus instead of a confined layer or plane is natural because 
of its border-less nature. The utilization of toroidal topol-
ogy in previous studies [9], together with the mathemati-
cal topological nature of the torus, which we might want to 
exploit for future research, led us to frame our network in 
the toroidal shape.

We find that the increase of axonal delay noise in the 
network corresponds to a decrease in the total propagation 
time of the signal from an input defined as initiator nin , to 
an arbitrary test neuron called output no . Communication of 
neurons takes place through action potentials (spikes), which 
travel to neighbors neurons inducing other spikes. Overall 
this creates a wave of spikes that propagates along the net-
work. The Hodgkin–Huxley model, introduced in 1952 and 
awarded with Nobel Prize in 1963, mathematically describes 
all the plausible action potential patterns properties of bio-
logical membranes with a large set of nonlinear differential 
equations [10].

Over the years, the models have been extensively ana-
lyzed for developing methods that can be used for more 
complex systems. An extraordinary compendium of the 
Hodgkin–Huxley model was presented by Eugene M. 
Izhikevich [11], who enhanced a model that accurately 
resembles the spiking and bursting behavior of cortical 
neurons, combining the biological outcomes of their model 
and the mathematical interpretation of integrate-and-fire 
neurons with a two-dimensional system of ordinary differ-
ential equations. Implemented by a PC program, Izhikevich 
could reproduce around twenty different responses which 
characterize real neurons spiking behavior.

As mentioned above, our model network lies on a toroidal 
structure to emulate confined neuronal domains. Moreover, 
the symmetric properties of this topology give us the advan-
tage to have always four neighbors for each node and that 
makes the network a perfect n-dimensional grid.

Specifically, each node is connected to its 4 nearest neigh-
bors and corresponding nodes on opposite edges are con-
nected in a cyclic fashion. The communication of each node 
can take place in 4 directions, +x or east, -x or west, +y or 
north, and -y or south. A torus network can be defined as a 

graph G = (N,C) , where N(G) and C(G) are, respectively, 
the nodes and connections of G [12]. The total nodes of the 
2D torus are n2 , and the two-dimensional torus structure 
leads naturally to a von Neumann-shaped neighborhood 
[13], used to define a set of cells surrounding a given cell 
provided with four inputs.

We initiate the simulation by choosing a neuron (cor-
responding to a node in our toroidal network) that acts as 
a stimulus and that we name “initiator.” This is connected 
to a constant external current of I = 10mA to induce it to 
spike regularly for the total duration of the simulation (in 
most of our tests 1000 milliseconds). Each single node is 
conceived to possess an intrinsic axonal delay d = cd + � , 
where cd is called from now on “central delay” and 
� = nd ⋅ � . The parameter nd is called “noise delay” whereas 
� = [(2x) − 1]; (0 ≤ x ≤ 1) is a random variable with uni-
form distribution used to implement the axonal propagation 
delay heterogeneity. We, hence, analyze the propagation of 
the signal within the network up to the chosen output. To 
gather more interesting data, we chose the two input-output 
neurons to have the maximum distance between them in our 
structure.

Given the symmetric toroidal shape of the network and 
considering the model to be framed over a 20× 20 grid of 
400 neurons, the maximum distance from two neurons is a 
Manhattan distance of 20, to which corresponds 10 nodes 
along the diagonal [14].

At the beginning of the simulation, only the initiator neu-
ron is spiking, then the spike activity propagates up to a 
far away test neuron that we name the “output” node. The 
simulation calculates the time it takes for the first spike to 
reach the chosen output node. We run several simulations, 
in each of which we increase the noise delay using the ran-
domly uniform distribution of the parameter x of � . Since 
the dis-homogeneity is random and uniform, we should not 
expect any advantage due to the noise, instead, we will prove 
that it favors a faster propagation of spiking activity and we 
will give a simple theoretical framework to understand why.

Methods

To implement our simulation, we used Python and the NEST 
library version 2.2 [15], which enabled us to portray a neural-
dynamic experiment by creating and connecting neurons to 
simulate a spiking network in continuous time. With the NEST 
library, we were able to implement specific functions to large 
sets of nodes whose connections have a configurable delay/
weight as well as parameters and state variables. The library 
functionality to implement loops and integrate the Izhikevich 
differential equations, simplifies the process of software devel-
opment [16].



Cognitive Computation 

1 3

In our structure, we used the neuron model developed 
by Eugene Izhikevich. Among several models for study-
ing spiking neural networks (SNN), we use the model pro-
posed by Izhikevich because of its high plausible biological 
dynamics, fundamental to reproducing well the non-linear 
phenomena dynamics of the neural network. Without real-
istic neuronal dynamics, we will not be able to explain the 
faster spiking activity propagation caused by the increased 
spatial heterogeneity in the network. Furthermore, by prop-
erly setting a few parameters, the Izhikevich neuron model 
reproduces most of all spiking activities, offering a solid 
accuracy to reproduce spike patterns [17]. Concerning the 
propagation delay between neurons, in NEST, it is imple-
mented by a pipeline/buffer procedure. At each time step, a 
Runge-Kutta engine processes the Izhikevich model differ-
ential equations in which the input of the presynaptic neu-
ron is taken into account by a weighted sum (the weights 
represent the synaptic connection strength parameter). 
However, if a neuron is delayed by a certain time, its signal 
circulates in a memory register, a pipe, long as the delay 
is measured in time steps number. In other words, at each 
time step, the presynaptic membrane potential is inserted 
at the beginning of the pipe, whereas the last element is 
fed to the Izhikevich differential equation. Since the pipe 
is rolled one step forward at each time step, and because 
it is as long as the delay, this method implements the time 
delay between presynaptic and post-ynaptic neurons in a 
seamless manner without interfering with the theoretical 
models of the delays in this study.

The model describes the time evolution of the mem-
brane potential v using a two-dimensional system of ordi-
nary differential equations with four parameters a, b, c, 
and d which characterize both the spiking and the bursting 
behavior of the neurons [11]

with after the spike, a reset process is given by:

where v� = dv

dt
 , and u� = du

dt
.

The variables v and u and the parameters a, b, c and d 
are all dimensionless [11], t is the time. In the mathemati-
cal model, v represents the membrane potential and u a 
membrane recovery variable, providing the negative feed-
back to v. After each spike, according to Eq. (1) the mem-
brane voltage and the recovery variable are reset down to 
the parameter c and to u + d , respectively. I is the vari-
able representing the external current stimulus, while the 
adjustment 0.04v2 + 5v + 140 allows the membrane poten-
tial v and time t to be scaled, respectively, to mV and ms.

{

v� = 0.04v2 + 5v + 140 − u + I

u� = a(bv − u)

(1)if v ≥ 30mV →

{

v ← c

u ← u + d

The parameters a, b, c and d, according to their values, 
enable the equation to depict various firing patterns model.

In particular:

a ∶ (0.02 msec−1) represents the recovery time for u; to 
an increment of a, resulting in a quicker recovery for u.
b  :  (0.20)[dimensionless] underlines the strength of 
u to the sub-threshold fluctuations of the membrane 
potential v. An increment of b is translated into a 
stronger interrelation between u and v, meaning possi-
ble sub-threshold oscillations and low-threshold spiking 
dynamics.
c ∶ (−65mV) represents the after-spike reset value of the 
membrane potential v.
d : (6mV) describes the after-spike reset of the recovery 
variable u.

The model of Izhikevich empowers us to define each neu-
ron with an accurate and biologically feasible mathematical 
structure, leaving us with the only need to establish a plausi-
ble connection structure for each node/neuron of our network.

A reasonable choice to design the dynamic network, 
find its natural place in the two-dimensional lattice von 
Neumann neighborhood (4-neighborhood model as in 
Fig. 2), where each cell is connected with its four adja-
cent cells located on its north, south, east and western 
position [13]. In machine learning, the Manhattan distance 
(or taxicab geometry) is used to calculate the distance (or 
“closeness”) between two points/nodes. Contrary to the 
Euclidean distance, there may be several different paths 
with the same Manhattan distance between two points, as 
shown in Fig. 1.

Fig. 1  There are several shortest paths to go from A to B, but the 
Manhattan distance, which in this case is 12, is the same for any 
shortest path. Instead, in the case of Euclidean distance, there exists 
one and only one shortest path from A to B 
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Once we have defined the new metric, we generate a two-
dimension matrix of 400 neurons connected according to the 
von Neumann neighborhood model and consider the first 
row to be up-connected with the last row (and vice-versa), 
and the first column to be left-arrow connected with the last 
column and vice-versa (see Fig. 2 for a schematic example 
of the structure). In this way, by theoretically bending the 
edges, we reshape the two-dimensional matrix in a tree-
dimension torus, on the surface of which lays our dynamic 
network that represents a model of a neural aggregate where 
information is confined into. This leads to a resembling affin-
ity with the toroidal neural networks (TNN) [18], defined by 
2D toroidal topology. The toroidal structure addresses the 
study to several appealing geometric interpretations.

For instance, as we can see in Fig. 3, the development 
of spike rate on a toroidal surface tends to approach the 
geodesic line, a locally length-minimizing curve. From a 
topological perspective, the torus shows important home-
omorphic properties, empowering the research to deepen 
further studies in computational topology for improving the 
understanding of brain functionality [19, 20].

Once we framed the network in a toroidal model and 
defined the neurons according to Izhikevich’s archetype, 
we run the simulations. In the first part of the program, we 
built a matrix whose nodes represent the neurons, connected 
in a pattern to form the grid of toroidal structure with 400 
neurons (20 × 20 arrays). To maintain the system in its sim-
plest form all neurons are considered identical, there are 
no inhibitory synapses and no thalamic currents. We want 
only to focus on the effect of dis-uniform axonal propagation 
delay [21], so we study the model at its prime conditions. In 
this, we considered RS (regular spiking) neurons, cause they 
address the most typical neuron class in the cortex.

We use the following terminology to identify the delay and 
strength connection for a neuron. Each of them is here charac-
terized by its synaptic strength connection w, which is constant 
all along with the network and will not be considered in our 
calculation.

As introduced above, the intrinsic axonal delay for each 
neuron is, in general, defined by the variables d = cd + � 
where cd represents the time it takes for the spike to propagate 
along the axon and � it is a random variation around this value. 
We have two main loops. The external one runs the integer j 
that varies the neuron central delay cd, whereas the internal 
loop runs i that changes its stochastic noise delay part � . We 
initially assigned a value to the variable ns (for noise steps) 
and (cd)max , representing respectfully the number of i-loop 
and j-loop such that:

When i reaches ns, after ns i-loops, j increases of 1. For sim-
plicity, we consider the value of the j-th  central delay (cd)j 
to be equal to j, so it assumes the integers values (1, 2, 3, 4... 
(cd)max ). Therefore, this structure realizes a heterogeneous 
intrinsic delay di,j for each neuron. The variable parameter 
is formulated as follows:

where

• �i,j = [(2xi,j) − 1]

• (cd)j = central delay; 1 ≤ (cd)j ≤ (cd)max , j ∈ ℕ

• �i,j = (nd)i,j ⋅ �i,j; (�i,j ≤ (cd)j)

• for each j: (nd)i,j = i
(cd)j

ns
, 1 ≤ i ≤ ns, i ∈ ℕ where 

0 ≤ xi,j ≤ 1 is an aleatory variable with uniform distribu-
tion assigned to each neuron at the i-loop and j-loop. In this 
way �i,j is always within the −1,+1 interval.

The simulation starts with j=1 (cd=1) which, at each i-loop, 
assigns to each neuron an intrinsic delay di,j , whose value, 
according to Eq. (2), ranges as follows:

For any single (cd)j , we run ns number of i-loops (ns-simu-
lations) and get the value for (nd)i,j as follows:

This framework realizes a network of 200 neurons, each 
of them having a different (heterogeneous) intrinsic axonal 
delay di,j . In the whole network, only the special neuron nin is 
stimulated by an external current I = 10mA. Once this starts 
to spike regularly, its activity propagates to its neighbors 
with a certain delay. Then its neighbors once activated, will 
transmit their activity to others and so on. To measure the 
spike activity propagation speed between two defined neu-
rons, a neuron distant from nin is used to test the arrival time 
of the spike information coming from nin itself. This neuron 

1 ≤ i ≤ ns , and 1 ≤ j ≤ (cd)max , i, j ∈ ℕ

(2)di,j = (cd)j + �i,j = (cd)j + (nd)i,j�i,j

(cd)j − (nd)i,j ≤ di,j ≤ (cd)j + (nd)i,j

(3)(nd)i,j = i
(cd)j

ns
, 1 ≤ i ≤ ns, i ∈ ℕ

Fig. 2  Toroidal network of 16 neurons plotted in 4 × 4 square matri-
ces. To create a biologically plausible continuous system, which is to 
avoid the presence of boundaries or borders in the structure, the first 
row is connected to the last row and the first column to the last one
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is indicated with no . The subscripts in and o stand loosely 
for input or initiator and output, respectively.

Consequently, we define:

• f
i,j

out as the time of the first spike of no.
• f

i,j

in
 as the time of the first spike of nin.

Accordingly, we can infer the spike propagation delay from 
nin to no as:

(4)Δf i,j
g

= f
i,j

out − f
i,j

in

Fig. 3  In A1 and B1 we run three simulations on the toroidal network 
of Fig. 2. Neuron 3 is considered the input of the network, being the 
only one connected to the external input and to initially spike. The 
three plots in A1 show the spike rate calculated in three different sim-
ulations of 1000 mseconds. In B1 other three simulations are shown, 
but this time the input neuron is in position 1. On B1 the path 1-5-
9-13-14-15 shows higher spiking frequency on the nodes 1-5-9-13, 
compared to paths with the same Manhattan distance as, for instance, 

the sequences 1-2-3-7-11-15 or 1-2-6-10-11-15. In A1, if we don’t 
consider the direct connection 3 to 15, the shortest path from input(3) 
to output(15) is 3 steps. Nevertheless, a high spike frequency tends to 
lay on the path 3-7-11-15. Alternative paths with the same Manhattan 
distance are 3-2-14-15 and 3-4-16-15. In the three-dimensional torus, 
if we consider the Euclidean distance, the sequences in red in A2 and 
B2 (1-5-9-13) tend to lay on the longitudinal geodesic, which, eventu-
ally, would be interesting in terms of optimization of a network
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where g represents the minimum number of steps from ni 
to reach no , that is, the minimum Manhattan distance [18] 
between the two neurons.

For each i, therefore, we identify a specific Δf i,jg  , and for 
a whole i-loop we gather ns values for it.

All the Δf i,jg  of one  i-loop have the same central delay 
(cd)j = j . When i reaches ns, the central delay (cd)j is incre-
mented of 1 and starts another cycle of i-loops.

As already stated, when j reaches (cd)max , the simula-
tion stops, leaving us with ns × (cd)max values of Δf i,j

g  to be 
analyzed.

From the data, we can infer if and how the increase of 
noise delay (nd)i,j has affected the transmission of the spike 
signal. More accurately, we want to ascertain if the increase 
of (nd)i,j decreases Δf i,jg  . For this purpose, in the next section 
we consider to compare the regression line for each i-loop.

Results and Discussion

To explain the effect of noise on the delay, firstly we observe 
how the spike activity propagation time evolves along with 
the network when it has a constant value of delay het-
erogeneity. In Fig. 4, with we pose (cd) = 50msec, with 
(nd) = (cd)∕4 = 12msec. Again, only neuron nin is spiking 
initially, and in the plot we show the “time of first spike” 
of all other neurons. Since the spike activity is propagating 
from nin in all directions in the network, this time of the first 

spike can be also called time of arrival in the sense that it 
represents the time in which the information from nin arrives 
at another neuron. As expected, we have a linear propor-
tionality between the Manhattan distance between the test 
neuron and the initiator. In our specific case, the network 
is a grid of 20 × 20 neurons. Thus, identifying the neurons 
with an index that counts each of them along the grid, and 
setting the initiator in the center of the second raw, gives the 
initiator the index of 30 (20 neurons for the first raw, plus 
10 neurons for the middle position in the second raw). With 
this indexing convention, we test the time of arrival of the 
spike-wave, for each neuron along the geodesic toward the 
output neuron 230 (placed as well on the geodesic line, on 
the central raw).

As noticeable from the simulation results of Fig. 4, the 
propagation delay in milliseconds is growing linearly with 
distance as intuitively we expect.

So, considering the time of spike arrival for each neuron 
in the network, we could elucidate if and how noise improves 
the circulation of spike activity in a robust and reproducible 
way. In Fig. 5 are shown two maps representing the toroidal 
network at two different noise levels. Each block represents 
one of the neurons and the color represents the time of the 
first spike in milliseconds. Since the only neuron that is 
stimulated externally is the initiator located in position x = 
10, y = 2 in the grid (its index is then 30), all the neurons 
that are spiking, do so because of spike axonal propagation 
along the network. When the noise level is lower (Fig. 5A, 
ndi,j = 5msec) the number of neurons never reached by the 
spiking activity is larger (deep purple color in the map). 
Instead when the noise level is higher (Fig. 5B, ndi,j = 
31msec), the opposite phenomena is observed. Overall 
speaking, this leads to conclude that increasing the noise 
will cause the total propagation delay d i,j

f ,fp
 of the network to 

decrease. If we consider Eq. (4), we can understand that by 
increasing the noise parameter (nd)i,j (that is when i is big), 
the probability to have Δf i,j

g < Δf
e,j
g  for most simulations 

increases. Namely, the regression line will be negative, that 
is, m < 0.

To describe the effect of noise on the delay, we reckon the 
general equation for the regression line [22]:

where

Here we introduce

• x̄ and ȳ as the average of the xi and yi.
• �x and �y as the standard deviations of x and y.

ȳ = �mx̄ + �𝛼

(5)�m =

∑n

i=1
(xi − x̄)(yi − ȳ)

∑n

i=1
(xi − x̄)2

=
𝜎x,y

𝜎2
x

Fig. 4  The spike activity propagation delay on the torus. Here the 
first spike happens at time t = 0 at the node located at index 30, the 
delay is calculated when the neuron at the node in the position indi-
cated on the horizontal axis has its first spike. The tested neurons are 
those located at the geodesic of the toroidal grid. There is a linear 
dependence between nodes distances and propagation m = 2.5 msec/
neuron represents the inclination of the linear regression. In these 
tests the intrinsic delay and delay heterogeneity are kept constant at 
cd = 50 msec and � = 12.5 msec, respectively
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• �2
x  and �x,y as the variance and covariance.

In our model (xi,j;yi,j) = ((nd)i,j;Δf
i,j).

We now try to give a mathematical formulation for m and 
prove that since from our data m < 0 , then we must have, 
in general, Δf (i,j) < Δf (e;j) when e ≤ i . In other words, when 
the noise (�)i increases, the delay Δf i,j

g  decreases. From Eq. 
(5), we calculate the slope for the linear regression1, where:

our, respectively, values are:

• x
j

i
= (nd)i,j = i

(cd)j

ns
 ; x̄ = (cd)j(ns+1)

2ns

• y
j

i
= Δf i,j ; ȳ =

∑ns

i=1
Δf i,j

ns

To simplify the symbolism from now on, we reckon 
cdj = cd, and Δf i, j = Δf i . We omit the index j since cdj is 
constant during the calculation of a single m while only i 
ranges from 1 to ns. By substituting xi, x̄, yi, ȳ respectfully 
in Eqs. (6) and (7), we get:

(6)𝜎2

x
=

∑ns

i=1
(xi − x̄)(xi − x̄)

ns

(7)𝜎x,y =

∑ns

i=1
(xi − x̄)(yi − ȳ)

ns

and

which we can write as:

From (5), we can formulate:

We have m < 0 only if the numerator is negative, there-
fore, for most of the Δf i , it must follow:

The Eq. (8) demonstrated how, by increasing the index 
i (i.e., noise), the delay of a signal is reduced compared 
to the preceding one. As a result, we can conclude that 
increasing noise reduces the delay of a signal from input 
to output for a fixed central delay (cd)j.

𝜎2

x
=

∑ns

i=1
(xi − x̄)2

ns
=

(cd)2

ns2

(ns2 − 1)

12

�x,y =
(cd)

ns2
[

ns
∑

i=1

(iΔf i) −
(ns + 1)

2

ns
∑

i=1

Δf i]

�x,y = (cd)ns2

ns−1

2
∑

i=1

|(i −
ns + 1

2
)|(Δf (ns+1−i) − Δf i)

m =

∑

ns−1

2

i=1
�(i −

(ns+1)

2
)�(Δf (ns+1−i) − Δf i)

(cd) ⋅
(ns2−1)

12

(8)Δf (ns+1−i) < Δf i

Fig. 5  We show the spike delay for each neuron of the 20 × 20 toroi-
dal network. For each neuron in the network, we report the first spike 
occurrence’s time, representing the time of arrival of the spike infor-
mation of the neuron that initially is spiking. This is the initiator neu-
ron nin of index 30, located in x = 10 and y = 2 in the map, which is 
spiking from t  = 0 due to a constant input current I0 = 10mA . The 
color bar shows the time of the first spike for each neuron in milli-
seconds. The dark blue regions are where the neurons never spike, 

i.e., the spiking activity from the initiator nin doesn’t arrive in time 
in those locations (our test simulation is of 500msec). Noticeably, in 
panel 1 the noise level is small ( ndi,j  = 5 msec) a good portion of 
the network is never reached by the spike activity, whereas when 
the noise level is higher (panel 2, ndi,j = 31 msec) the circulation of 
spikes is faster with more neurons reached by the activity of the ini-
tiator

1 It is just reported a part of the demonstration.
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In our study, we changed the intrinsic axonal delay (cd)j 
from 1 up to 100 milliseconds. For each of these values, we 
tested forty different levels of noises, ranging from (cd)j∕40 
up to (cd)max = 100msec. The top panels of Figs. 6 and 7 
show the distribution of the spike arrival times in the out-
put neuron no . In Fig. 6, the central intrinsic delay is large, 
93msec, so only 20 arrival times are reported. Our simula-
tion lasts 1000 msec, and depending on the variability of the 
stochastic �i,j factor, in some cases, the neuron no is never 
triggered to spike (the spike information from nin doesn’t 
arrive in time). Instead, as in Fig. 7, the histogram is com-
plete when the central delay ranges around 31msec. It has 40 
arrival times, with the distribution concentrated on a shorter 
delay (approximately 350msec). The central panel of these 
figures shows the time of the first spike at no for increasing 
(nd)i,j . The dark dotted line in the linear regression depicts 

the significant characteristic of how such time decreases as 
the noise level rises. Interestingly, examining the bottom 
panel of both figures, the slope of the regression m is always 
negative, with a minimum outcome around cd = 35 msec 
(the y axis is reversed).

The bottom panel of Fig. 6 reports the value of m for each 
cd, from the first to the last simulation (i.e., 2 ≤ cd ≤ 93.07 ). 
We were able to reproduce the minimum value of m around 
cd = 35 msec for repeated identical simulations with differ-
ent random seeds. The peak of m was always located around 
a global minimum between 30 ≤ cd ≤ 35.

The slope m, which indicates how noise reduces the 
propagation speed within the network, remains negative in 
all simulations we’ve conducted. The fact that this occurs 
in a repeatable manner demonstrates the robustness of this 
feature in our model neural network.

Fig. 6  In the top panel, we plot the histogram of the time difference 
between the first spike of the output neuron no and the first spike of 
the initiator nin . These times represent the times of arrival of the spik-
ing activity from an initiator neuron placed at the position 30 to a test 
or output neuron placed far away in the toroidal network (in position 
230). We performed 40 simulations with increased noise levels, from 
cd/40 msec up to a maximum of cd = 100 milliseconds. The result-
ing histogram is centered around a delay difference Δf i,jg  of about 800 
milliseconds. In the central panel, we plot the same arrival times dif-
ferences in function of the noise (nd)i,j . We have 40 increasing values 
of (nd)i,j from 1 to (cd)j (cd is fixed in these plots to (cd)j = 93.07 ). 
We notice that for a small value of heterogeneity ( (nd)i,j between 0 

and  23), the delay difference doesn’t change much, positioning itself 
on values greater than 800. Eventually, by increasing the noise, Δf i,jg  
decreases accordingly, reaching values below 800 msec. The dot-
ted line represents the linear interpolation with an inclination of 
m = −2.15 , as indicated in the figure’s title. In the bottom panel, we 
plot all the values of m obtained by previous simulations, where each 
one has a different neuronal intrinsic delay (cd)j (ranging from 5 to 
100 msec at 1 msec steps). While the top and central panel refer only 
to the value of (cd)j = 93.07 , the bottom panel reports all the previous 
values of m up to the current (cd)j . A negative m indicates that the 
value of delay is decreasing
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Model

We‘ll now try to give a theoretical interpretation of the 
negativity of m.

To do so, we must investigate the neuron’s dynamic sys-
tem characteristics, which necessitates an understanding of 

the membrane potential/recovery system’s phase portrait. 
Conditions such as the equilibrium, limit circle, attrac-
tor [11], and other characteristics in the phase space help 
to clarify the spiking behavior from a dynamical system 
point of view.

We analyze here two phases, starting with the situa-
tion of a neuron in an equilibrium state, whose membrane 
potential is resting [23].

In Fig. 8(1), input currents produce a small amount of 
presynaptic potential (PSP) [24], in the phase diagram of 
Fig. 8(2) its membrane potential moves a bit around the 
equilibrium (black spot, attractor-resting potential) and, 
after few milliseconds, it will go back to its resting position.

Instead, in Fig. 8 panel 3, we show the effect of two 
presynaptic stimuli. A little signal PSPs (A) causes a slight 
change in the equilibrium, whereas a bigger signal PSPs 
(B) causes the neuron’s intrinsic dynamics to spike after a 
short time. The period between the arrival of the stimulus 
and the realization of the spike is referred to as process 
time.

Now we’ll look at what happens when a PSP signal A 
reaches a postsynaptic neuron while that same neuron is 
still firing as a result of a prior PSP signal B. Consider the 
case where a spike leaves a neuron nf  and travels in the 
direction of neuron nf1.

Firstly we define:

• Process time � i,j

f
 : that represent the time for neuron nf  to 

process a presynaptic spike and deliver its own postsyn-

Fig. 7  Same as Fig.  6. Precisely, we present the value of m corre-
sponding to the global minimum for m = −4.17 (in the graph, mini-
mum appears as a maximum as the ordinate are inverted for clarity). 
The biggest effect of delay difference was observed in all of our test-
ing for intrinsic delay values in the range 31 ≤ cd ≤ 35 . When the 
intrinsic delay is centered at 35 msec, the signal from nin propagates 
faster

Fig. 8  Panels 1 and 2: a stable equilibrium. A small presynaptic sig-
nal (PSP) goes from neuron nf  to nf1 . The membrane potential will 
fluctuate around the equilibrium point before returning to its resting 
state (black dot, the equilibrium point). Panels 3 and 4 depict the 
responses of two different presynaptic stimuli. The small PSP (A) 

doesn’t induce a spike, whereas a bigger PSP (B) does. The time it 
takes for the neuron to achieve a spike following the PSP is referred 
to as process time, and it is measured in milliseconds as in the Izhik-
evich regular spiking neurons employed in our model
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aptic spike, the two indexes i and j represents the current 
central delay (cd)j and noise delay (nd)i,j.

• Axonal transmission delay �i,j

f ,fp
 : the time for a spike to go 

from neuron nf  to one of its four adjacent neuron 
nfp,(p=1,2,3,4) , explicated as: 

• Total transmission delay d i,j

f ,fp
 : 

We need four indexes because in our model, each chang-
ing of the noise delay (nd)i,j , corresponds to an i-simulation, 
which associates to any single neuron. The random variable 
0 ≤ xf ,fp ≤ 1 , characterizes the delay transmission from nf  to 
nfp , and a process time � i,j

f
 . Therefore, each i-simulation 

defines d i,j

f ,fp
.

Once everything is in place, the network operates as 
expected: a spike reaches a specific input neuron, say nf  . 
After a process time tauf  , it departs nf  and reaches four adja-
cent neurons nfp,(p=1,2,3,4) with four different axonal transmis-
sion delays �i, j

f , fp
 defined in Eq. (9).

Assume that some additional earlier signals A ′ and B ′ , 
respectively, excite the presynaptic neuron f and the postsyn-
aptic neuron fp at the same time (notice that the simultaneous 
stimulation of f and fp has been chosen for clarity, the actual 
interval between the two stimuli A ′ and B ′ is arbitrary, and 
will not influence our general conclusion). We now want to 
focus on the case when :

(9)�
i,j

f ,fp
= (cd)j + nd

i,j

f ,fp
= (cd)j + i

(cd)j

ns
⋅ (2x

i,j

f ,fp
− 1)

(10)d
i,j

f ,fp
= �

i,j

f ,fp
+ �

i,j

f

(11)𝜇
i,j

f ,fp
< 𝜏

i,j

fp

According to Eq. (11), the spike produced by nf  will reach 
nf1 soon, while the postsynaptic is still processing B′ . The 
summation of these two membrane potentials, like in the 
phase diagram of Fig. 8(4), will push the differential equa-
tion solution to higher membrane potential, facilitating the 
spike generation thus reducing the processing time � i,j

fp
 . 

When this event happens, the total time interval between the 
initial presynaptic stimulus caused by A ′ and the final post-
synaptic spike d i,j

f ,f1
 , will be lower than when the inequality 

Eq. (11) is not satisfied. In other words, because of the ran-
domness factor within the axonal transmission delay �i,j

f ,fp
 , 

this delay time will be randomly smaller or higher than aver-
age. However, only when this is smaller, the arrival of a 
second spike in the postsynaptic neuron will induce a lower 
process times in it. Instead in the other case, when �i,j

f ,fp
 is 

higher, the process times � i,j
fp

 will not be affected. This asym-
metry creates the effect that we observe in the simulations. 
The increasing degree of noise in the network increases the 
probability of this condition happening in multiple neurons, 
inducing faster spiking activity propagation and improving 
the overall circulation of information along with the net-
work, see Fig. 9 for a sketch representing the phenomenon.

Conclusions

We constructed a model network of 400 neurons placed 
on a 20x20 toroidal grid, neurons on the border are con-
nected to those on the other extreme of the grid realizing 
the toroidal structure to emulate real brain patches where 
information exchange is confined on localized domains. 
We wanted to study the influence of structural heterogene-
ity in the network and see how it may help the diffusion 

Fig. 9  A sketch representing how the variability of the axonal delay 
influences the overall spike activity propagation along with the net-
work. Two cases are shown: in panel 1. the variability of the axonal 
transmission �i,j

f ,fp
 is wide (from zero to 50ms in this example where 

the central value of the delay is 25ms). Since this value can become 
smaller than the processing time � i,j

fp
 , this will positively influence the 

phase space of the neuron’s dynamic, resulting in a faster postsynap-
tic response. In panel 2 it is shown the opposite situation in which the 
variability of the axonal delay is smaller and never realizes this condi-
tion. Since a longer than average, �i,j

f ,fp
 doesn’t increase postsynaptic 

process times, whereas a shorter than average does, this indicates how 
a degree of randomness helps the overall circulation of spike activity 
on the toroidal network
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of information in the system. To do that, we made a single 
source of spikes, an initiator neuron nin that is permanently 
connected to an external current I that makes it regularly 
spiking for the duration of the tests. The spiking activity of 
this neuron represents the information and it is transmitted 
to the adjacent nodes on the grid, distributed accordingly 
to a von Neumann neighborhood.

Our study shows that in this simplified model network, 
the time it takes for the first spike from the initiator neu-
ron nin to reach and induce spiking to distant neurons is 
decreasing with the increased heterogeneity in the axonal 
propagation delay. The heterogeneity is expressed by a 
noise factor in the axonal delay term, manipulating this 
parameter we found that noise favors a faster spread of 
information along with the network.

We devised a theoretical interpretation of this counter-
intuitive result, which is involving the nonlinear dynami-
cal nature of the timing and propagation of neuronal spike 
activity. In our treatment, the presynaptic signal induces a 
spike with two different time delays, the first is considered 
a processing time that is intrinsically related to the differ-
ential equation representing the neuronal electrochemical 
dynamics and a transmission time that is inherent to the 
transfer along the axon. Our theoretical model shows that 
the random variations of transmission times due to the het-
erogeneity, favor faster processing reducing the overall spik-
ing activity transfer. We have shown rigorously that this 
is caused by an increased probability for a second PSP to 
intervene when the neuron is still elaborating a previous 
one, effectively enhancing its action and accelerating the 
spike processing.

Since in biological reality, the axonal propagation delay 
is a proxy of the axon length or the inter-neuron distance, 
this shows that the randomness by which neurons are 
located in the brain could be interpreted as a strategy to 
improve and optimize the transmission of information in 
biological systems.

These results contribute to the understanding of the fun-
damental properties of information transfer in the brain, 
in particular, it gives a model for an explanation of other 
paradoxical phenomena in which noise appears to favor 
complex computational processes like for example tran-
scranial random noise stimulation (tRNS) that has shown 
to be the most effective in enhancing neural excitability 
and improving perception and other cognitive tasks in 
human subjects.
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