
1 Introduction

Statistical mechanics is a very important branch of physics, it deals with the
behaviour of many particles and tries to use mathematics in order to control
and estimate the global behaviour of a great number of independent objects
(molecules, particles, charges... you name it !). For example, if we consider
the movement of a single molecule in a gas, we can imagine that its movement
is chaotic, that the particle will act like a ball colliding randomly with other
molecules or other objects around it. Of course we know very well the basic
physics of such movements. A straight line, a collision and another straight line
again. This is easy Newtonian physics! But, the problem is that it is clearly
too complex to use standard physics to describe an ensemble of a great number
of molecules. If we wanted to do so, we would need a number of equations
equal to the number of molecules involved. This means, for just a mole of gas,
about 1023 equations ! Clearly this is absurd. Then how can we explain collec-
tive molecular phenomena like the temperature, the pressure of a gas, or other
collective phenomena like diffusion, Brownian motion or electric conduction ?
These are the problems that statistical mechanics approaches and solves with
very good approximations in many cases.

In this book we try to explain the fundamentals of Statistical Mechanics.
Especially we want to make the student to understand how some solutions are
achieved. We want to give the student the method to reach a solution in order
that he can derive it again by him/herself without the need of the book. Or
better, we hope this book will give students a new ”way of thinking” and to
develop his/her own ability to derive statistical mechanical solution for general
and even new problems.

The book is based on the ”Thermodynamics” course (this course is named
also ”Micro phenomena”) in Yokohama City University that accepts both Japanese
and International students. English vocabulary is simplified and we tried to
avoid complex phrases in order to be more easily understood by international
readers. A full translation with rephrasing and comments about English ex-
pressions is also provided on the opposite side of each page for the Japanese
student.

2 First Experiments with gases

Since many years ago people studied the properties of gases. Even in the late
1600, Mr. Boyle discovered that the product Pressure by Volume PV is always
a constant, if the amount of gas and its temperature do not change.

The experimentalist at the time of Boyle (1650), could measure the expan-
sion with an apparatus that is represented in principle in the figure 1:

A fixed amount of air was trapped inside this J shaped tube. Boyle changed
the amount of mercury in the tube in order to exert more or less pressure on
the air. With this simple system he could measure both the air volume and the
pressure exerted by the mercury on it.
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Figure 1: A schematics of the apparatus used by Boyle in 1662. In the graph
it is represented the linear behaviour with temperature, however Boyle didn’t
know that PV=nkT at that time. He only new that the product PV was a
constant, independently by Gas composition or nature.

At constant temperature, he was surprised to find the famous relation PV =
constant. More surprisingly he discovered that this was true for any kind of gas
he put inside his J shaped tube !

There was a linear relation between the product PV and the temperature
T . Boyle noticed that the inclination of the line was approximately the same,
for any gas, if he inserted about the same number of molecules. And this was
true for ANY gas they tried ! Why this was happening ?

This fact, now called ”Boyle law”, it is amazing. Why it is amazing? Because
of its simplicity! This result is so simple that it is easy to miss what is quite
remarkable about it. Gases come in many different forms. We might have a
very light gas like helium, the gas used to lift balloons, whose molecules are
little spheres. Or we might have a denser gas like the oxygen of the air, whose
molecules are dumbbell shaped. Or we might have a vaporized liquid, like
water vapour, whose molecules are shaped something like the letter ”Y”. In
every case, the same law holds, even if the oxygen or water vapour are mixed
up with another gas like nitrogen in the air. Yet nothing in the law takes note
of all these differences, but still this law works...!

Later in the 1700 century J. Charles and J.L. Gay-Lussac discovered that
there was some kind of linear dependence with temperature, now we call these
laws the Charles law (V/T = constant) and the Gay-Lussac law (P/T =
constant).

Example:

Suppose you are Boyle in 1662. You trap in the ”J” shaped tube a fixed amount
of air. Changing the amount of mercury, you change the amount of pressure
that is exerted on the gas (air). You first measure pressure and volume and you
obtain these values:

V1 = 1 cm2(10−4m3)
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P1 = 0.1Pa

(1)

Then you add more mercury in the column. The weight of the column is
now the equivalent of 380 mm of mercury over the atmospheric pressure, about
0.05 Pascal, so you have:

P2 = 0.15Pa (2)

can you calculate the volume you expect in this case ? Please use MKS units,
Pascal is already in MKS units (1 Pa = 1 Newton per one square meter).

Answer: V2 ≈6.66 10−5m3

3 The law of Ideal Gases

To put together all these relations found by these researchers, we have to un-
derstand one of the oldest mystery of science: what is the physical meaning of
temperature? We know that material can be hot or cold at touch. But what
does that means in physical terms? How to determine the real nature of the
temperature ?

Well, we consider a cylinder full of gas, like in figure ??. If we suppose that
inside this piston there are N particles, what is the force exerted on the piston ?
Well, the answer is easy. By definition, if the piston has an area A, the pressure
on it is

P =
< F >

A
(3)

where the symbolism < F > means the average force F .
Now, for sure we can measure the average force on the piston < F >, but

how much it is the single force of a single molecule hitting the piston ? Let’s
consider the momentum of a particle, it is

p = mvx (4)

we indicate vx instead of v because we now consider only the component of the
force orthogonal to the piston surface. We call this orthogonal direction x.

What is the net force acting on the piston ? Naturally, it is the force of
a single particle multiplied by the total number of particles hitting the piston,
lets call this number N∗, so : < F >= N∗F . Let’s now estimate this force. We
remember from basic physics that the impulse p = mvx is related to the force
by

F =
p

t
=
mvx
t

(5)

where t is time. This is the force of a single hit, a collision of a molecule on the
piston. Let’s find how many hit will occur in a small amount of time t. Well,
only the particles near enough to the piston will hit it, these particles are those
at a distance less than vxt. All the others they do not have enough time to
reach it (!) These particles are enclosed in a volume V ∗ = Avxt, where A is the
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area of the piston wall. Now, if we think with proportion in our mind, of course
the ratio of the number of particle hitting the piston against the total particle,
and the ratio between the volume that enclose them against the total volume,
should be the same. . . so this relation must be true:

N∗

N
=
V ∗

V
=
Avxt

V
(6)

so the total number of particles hitting the piston in the time t is :

N∗ = N
Avxt

V
(7)

Now using the fact that < F >= N∗F and equation 5, we can calculate:

< F >= N
Avxt

V

mvx
t

(8)

now we simplify t and divide by the area A, we obtain immediately that :

PV = Nmv2
x (9)

Now we notice that we have a term mv2
x. . . , this is twice the kinetic energy

1/2mv2. Let’s try to substitute this kinetic energy in our equation (9). To do
so, we must be careful. Until now we considered the sole x direction, however for
general random and uniform velocities, the kinetic energy is distributed equally
in all directions, so it is

< v2 >=
1

3
< v2

x > +
1

3
< v2

y > +
1

3
< v2

z > (10)

this means that the total kinetic energy is three times 1
2mv

2
x. So finally we can

write:

PV =
2

3
N < Ek > (11)

where < EK >= 1/2mv2. Again we should remember that the brackets <>

represent the average value. Coming back to our experiments, we know that
the product PV is proportional to the temperature multiplied by some con-
stant. Very interestingly if we look well at equation (11), and compare it with
PV = constant ∗ T , it is clear: the temperature seems to be something pro-
portional to he kinetic energy of our gas! This is a great result, we solved one
historical question: what is the nature of temperature?Temperature is a physio-
logical sensation due to the kinetic energy of the molecules that collide and hit
our body. More energy we feel hot, less energy we feel cold.

Now we need only to clean up a little equation (11). We define

< Ek >=
3

2
kT (12)
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where we call k the Boltzmann constant, we have the nice and famous expression:

PV = NkT (13)

This equation is called usually the ideal gas law. Experimentally k results
to be equal to k = 1.38 10−23 Joule per degree Kelvin. (if we want to use
another constant, instead of the number of molecules N , we can use the number
of moles n. Then the eq. 13 becomes PV = nRT with R the universal gas
constant R = 8.31 J/(mol K))

Remember that we choose eq (12) just because it is convenient to not have
the number 3 or 2 in the final formula eq. (13). However, this was just a choice
that was made years ago, any other definition would have been good as well.

Example:

Suppose we have a rubber balloon full of Air. We are at room temperature
T = 300K, its volume is one litre and its pressure is a little more than the
atmospheric pressure, let’s say 1.5 atmospheres. Can we estimate the total
number of molecules N that are inside the balloon ?

Yes it is possible, we simply use the equation PV = NkT , and extract N
from that. In these basic calculations we must be careful not to make mistakes
with dimensions. Let’s do it together putting all dimensions between square
brackets [].

We use MKS. First we consider that 1 litre is 10−3m3 and that 1 atmosphere
is 0.10 Pa. Now we write

N =
PV

kT
=

0.15[Pa] ∗ 10−3[m3]

1.38 10−23[J ]/[K] ∗ 300[K]

(14)

we have to be careful with units: considering that the unity [J ] is in MKS
[J ] = [m2 ∗Kg/Sec2] and that [Pa] = [Kg]/([Sec2][m]), we can rewrite:

N =
PV

kT
=

0.15 [Kg]
[Sec2][m] ∗ 10−3[m3]

1.38 10−23[m2] ∗ [Kg]
[Sec2]∗[K] ∗ 300[K]

(15)

you note that all dimensions disappear, so at the end we have

N =
PV

kT
=

0.1510−3

1.38 10−23 ∗ 300
≈ 3.6 1016

(16)

This is the number of molecules in the balloon! Can we estimate also the weight
of this thing ? Yes, why not? If we know how many molecules are there, we
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can estimate also the total weight. If we assume that Air is roughly 80% of
Nitrogen, from the chemical tables we know that one mole of Nitrogen (that is
about 6 1023 molecules) weights 14 grams. So a mole of air roughly speaking
should be about 0.014[Kg]/0.8, that is 0.017[Kg] of 17 grams. Our total number
of molecules is not a mole, but much less N = 3.61016. How much less ? The
fraction of moles of air we have in the balloon Nmol is

Nmol =
3.6 1016

6 1023
= 6 10−8

so the total weight of the balloon is 17 grams multiplied by Nmol, that is

weight = 17[g] ∗ 610−8 ≈ 1µg

As you noticed we did very rough assumptions during this calculation. However,
you may agree that - very roughly speaking - this value can approximate the
weight of our balloon, at least in the order of magnitude. You can devise a more
fine estimation of the weight by yourself as an exercise.

3.1 Isotermal compression/expansion

We will see later that equation (13) is also called the equation of isothermal
compression, because in the mathematical space PV (where PV are the vari-
ables, as XY are variables in the Cartesian space) if temperature is constant we
have the relation PV = const. (k is obviously a constant and N is the number of
molecules in the box, so it is a constant too). We can plot this curve in the PV
space (figure 2). This is called an isothermal compression because it represent
the relation between pressure and volume of a gas when its temperature is not
changing.

Figure 2: The isothermal expansion of a gas in the PV space. Please notice
that this behaviour is valid for any time of gas or mixture of gases!
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3.2 Adiabatic compression/expansion

Now let’s do a last effort and make some more considerations: what happens if
we strongly compress a gas in a piston? Of course, the temperature of the gas
will increase. So these kind of compressions cannot be isothermal as the one
above. How will be the dependence of Pressure and Volume in this case ?

As we know energy and temperature are related accordingly to equation 12.
Using (11) and (12) we can write

PV = N
2

3
<

1

2
mv2 > (17)

let’s consider now the total kinetic energy of the system U = N < 1
2mv

2 >, this
U is generally called the total internal energy of a gas. It is the multiplication
of all the molecules present, N , by their average kinetic energy.

PV =
2

3
U (18)

This equation is valid if all the energy is only kinetic energy. In other words if
there is not other forms of internal energies, like for example molecule rotation,
molecule bending, molecule vibration or other form of molecular energy. If our
gas is for example a monoatomic gas, then all these other form of energies are
negligible and the internal energy U is a good approximation of the total energy
within the gas. For historical reasons, let’s modify equation (18) as

PV = (γ − 1)U (19)

this of course can be always done. It just means that the parameter γ is equal
to 5/3 in the case of an ideal mono-atomic gas. Now let’s suppose we want to
calculate an expression for the work of the system. We know from basic physics
that Fdx is the work, multiplying and dividing by the area of the piston (figure
??), it is straightforward that

F

A
∗Adx = work (20)

The pressure is F/A and Adx is the the small variation of volume dV due to
the expansion of the piston. This is the mechanical work exerted to the gas by
the compression. Where this mechanical energy (mechanical work is energy!)
is going to end up? If there are no losses outside, this work will correspond
to an equal and opposite variation of internal energy of the gas! If so, we can
write PdV = −dU . We said above that U = PV/(γ − 1), so we have only to
differentiate equation (19):

dU = (PdV + V dP )/(γ − 1)

(21)

Now we substitute PdV = −dU and we have:
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(γ − 1)dU = (PdV + V dP )

−(γ − 1)PdV = (PdV + V dP )

(22)

Now eliminating PdV we have:

γPdV = −V dP

γ
dV

V
+
dP

P
= 0

(23)

Now we integrate and we have:

γ

∫
dV

V
+

∫
dP

P
=

∫
0

(24)

remembering that the integral of zero is a constant and that
∫
dx/x is ln(x/x0)

we have:

γlnV + lnP = const. (25)

if you remember the properties of logarithms, this means that:

PV γ = const. (26)

This is a very important relation because it express the behaviour of pres-
sure and volume in the case we have an expansion or compression that actually
changes the temperature of the gas and there are not external losses of heat.
Equation 26 it is also called the equation for an adiabatic expansion (or com-
pression). Please notice that the exponent γ is beautifully at the exponent of
the volume. Now you understand why in equation 19 we used this parameter in-
stead of the usual 2/3. Actually, we can measure γ experimentally, just making
an adiabatic expansion and measuring P and V . We find that for mono-atomic
gases γ is about 5/3 as expected. Instead for more complex gases, because of
vibrational and other spurious phenomena that make the gas a non-ideal one,
we can measure different values of γ. The isothermal and adiabatic expansions
look different on a PV plot as shown schematically in figure 3.

Example:

Let’s suppose that a gas is kept in a box at constant temperature and at a
pressure of P1 = 1Atm, volume V1 = 1 liter. We let expand the gas to 1.2
liter keeping the temperature constant, what happens to the pressure ? Using
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Figure 3: A scheme of isothermal and adiabatic expansions of a gas in the PV
space.

what we understood above, the product PV γ must be constant. So we simply
calculate the pressure with this expression

P2 =
P1V

γ
1

V γ2

Let’s convert this to real numbers, we again pay attention to units, we must use
MKS always, so we remember that 1 Atm is about 105[N/m2]:

P2 =
105[N/m2] ∗ 0.0015/3[m3]

0.00125/3[m3]
= 73.7[N/m2]

This show how a small difference in volume can result on a big drop of pressure
in the adiabatic expansion.
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4 A mathematic exercise: the physical meaning
of differentials

In this course it is very important to understand differential models of the
processes we study. For this reason it is of paramount importance to grasp the
philosophy of differentiation and integration of a variable. For this purpose let’s
play around with few basic problems. Trying to solve these, will help us to
understand the principles of differentiations from the physicist point of view.

In the real world, physical variable are related in complex way. Differentiate
means to consider very small differences of variables in order reduce curves in
straigh lines. In other words, we think small and reduce complexity.

Any curved path, can be considered as the sum of many small linear seg-
ments. For very small differences, any complex relation can be considered like
a linear one. The key point is that these difference should be really small.

For example let’s consider the relation PV = NkT as we studied in the
previous chapter. We have three variables (P , V and T ) that are related by
a defined mathematical relation. If V changes, the other two variables must
change accordingly along a certain curve. Let’s study the small differences
between two points of this equation, point one will be (P1, V1, T1) and point two
(P2, V2, T2). For example:

P1V1 = NkT1 (27)

P2V2 = NkT2 (28)

(29)

let’s take the difference:

P2V2 − P1V1 = Nk(T2 − T1) (30)

now, let’s add +P2V1 − P2V1, this term is zero so we can do that:

P2V2 + P2V1 − P2V1 − P1V1 = Nk(T2 − T1) (31)

now, we collect P2 and V1:

P2(V2 − V1) + V1(P2 − P1) = Nk(T2 − T1) (32)

P2∆V + V1∆P = Nk∆T (33)

Untill now we didn’t do anything special, we just used basic algebra and called
the difference of two points with the symbol ∆. Now think about the fact that
these two points are very near each other: if the differences between the point
1 and point 2 are really, really small, then this means that the value of P1 and
that of P2 are almost the same. They are so similar that they can be confused.
So why to write P1 or V2 if they are practically the same ? If so, let’s call them
just P ≈ P1 ≈ P2 and V ≈ V1 ≈ V2 and write again our equation (33):
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PdV + V dP = NkdT (34)

You see? We obtained, with only few algebra and some simple thinking, that
the differential equation of PV = NkT is PdV + V dP = NkdT . The symbol d
in dV or dP is sometime called infinitesimal. We knew that from mathematics.
But now we gave to the differentiation process a physical meaning. We learned
that to remember how to differentiate complex physical equation, you only need
to take two points of the equation and think small !
Any differential equation, though, is valid only for points so near each other,
that almost coincide... so they do not have so much use in practical applications.
To be useful they must be integrated.

Clearly you know how to integrate. But again, to understand the physical mean-
ing of integration in a practical physical problem, let’s do some more exercise.
Let’s consider a simple application problem: what is the circumference of a cir-
cle of radius R ? Of course we all know it is l = 2πR, but let’s pretend we do
not know that. Let’s think small and concentrate on a very small angle, like in
the figure ??. The angle should be so small, that the curvature of the vertical
arc can be neglected. We consider the arc as a straight segment of length dl.

[Cerchio.eps]
We have then a triangle, we know from trigonometry that

R sin dα = dl

We call the angle dα because it is as well so small, almost zero, as dl. At this
point we have also the advantage that for small angles it is valid the relation
sin dα ≈ dα. So if we thought small enough, we can write with very good
approximation

dl = Rdα

But this is not the circumference of our circle, it is just the very small infinites-
imal part of it !

We have to integrate on all the angles and we will have our circumference.∫
dl =

∫ 2π

0

Rdα

From basic mathematics we know that R can go out of the integral because it
does not depend on α, we finally have our circumference:

l =
∫ 2π

0
Rdα (35)

l = R
∫ 2π

0
dα (36)

l = 2πR (37)

This is exactly what we expected! How we did this ? We simply found
the correct relation for the variables in case of very small differences and then
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integrated. This is a principle that is very often used in making physical models
in statistical mechanics and in other fields.

Just to have fun in the same way we can calculate now the area of a Sphere.
This time we are in two dimensions, we must use another angle φ that runs
vertically. We start from our previous result, the length of the circumference
is l = 2πR. We think small again, and we construct a very small surface on
our circumference in the vertical direction. To do so, we just multiply the
circumference by the small length dl = Rdφ, exactly in the same fashion as
before (see figure ??).

[areaSph12.eps]

dS = (2πR)dl (38)

But what is the circumference ? Is it really (2πR) as written above ? Well, it
is not ! If we look at figure ??, we notice that while we go up with angle φ, the
radius R” gets smaller and smaller. From trigonometry again, we know that
R” = R cos(φ), so the correct relation for the circumference is 2πR cos(φ), then
we have

dS = (2πR cosφ)dl (39)

dS = (2πR cosφ)(Rdφ) (40)

dS = 2πR2 cosφdφ (41)

the we integrate and we have:∫ S

0

dS =
∫ π/2

0
(2πR)(R cosφdφ) (42)

S = 2πR2
∫ π/2

0
cosφdφ) (43)

S = 2πR2[sin(π/2)− 0] (44)

S = 2πR2 (45)

If we look again well at the figure, integrating from 0 to π/2 we covered only the
top hemisphere, so we have to multiply by two, and at the end we have what
they thought us at elementary school:

S = 4πR2

Now, the volume of a sphere is V = 4
3πR

3 can you calculate it yourself ?
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5 Thermodynamics

What is thermodynamics ? In few words we can say that is the science of
studying the relation of between mechanical energy and thermal energy. Ther-
modynamics is an older theory, and it goes back to the time of Sadi Carnot the
beginning of 1800 century, when the molecular theory of matter was not know
well. So what we studied up to here, was not know yet, and we are going back
in time a little when we study thermodynamics now.

First law: the heat engine

The theory of thermodynamics being so old is based on simple observations,
more than rigorous molecular models. At the beginning of the 1800th, the heat
was considered to be a kind of fluid that flows in materials, and even the principle
of conservation of energy was not established. Let’s consider as an example a
rubber band. If we expand it, we can observe an increase in the temperature of
the band. If we put it between the lips, we can clearly feel that it gets warmer.
On the contrary, if we relax it quickly, we can feel that the rubber gets cooler.

These observations made the people of that years to make the following
considerations about heat and mechanical force. When a rubber band is holding
a weight it is well extended, it is stronger and if we measure the temperature
it is hot. On the contrary, when we relax the band, for sure is not holding any
weight, it is then not strong, and we observe it is cool.

People also observed that heating up a rubber band that was holding a
weight, actually lifted the weight a little more. Whereas, cooling it down caused
the extension of the rubber band, and released the down a weight attached to it.
So the first conclusion is: if we put heat into a material we can have mechanical
work for it. In our example for mechanical work of course we mean the product
Fdx that we obtain if an object attached to our rubber band is moved up of dx
by the force F of the rubber.

All these observation led to general considerations: if a system has a certain
internal energy U , then any variation of this internal energy must be equal
to any external heat Q plus any mechanical work we give to this system. In
mathematical terms:

∆U = ∆Q+ ∆W (46)

this is called the first law of thermodynamics. In the case the internal energy
does not change, we can of course write:

∆Q = ∆W

Q2 −Q1 = ∆W (47)

But what is the physical nature of this internal energy U , and what is the nature
of the heat Q?. In 1800, it was not clear!
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5.1 The second law: order and disorder

In the times of Sadi Carnot, that was the son of a famous military leader, the
steam engine was popular and under production, however there was not a proper
theory to explain its working principle. So you can understand the importance
of the principle of thermodynamics at that time. Carnot was very interested
in these machines, and he was able to state a very important principle, the so
called second principle of thermodynamics. This principle can be expressed by
this phrase:

The heat flows spontaneously from a hot body to a cold one. The inverse
process is not possible unless we introduce external work.

There is another way to express the same thing, is with the introduction
of the concept of disorder. The other way to express the second principle of
thermodynamics is then:

In a system any process can only increase the total disorder, unless we in-
troduce external work.

These two phrases express the same things we can observe from real expe-
rience. The fact that a hot body put aside a colder one transfer its energy to
the cold one and not the opposite. Why we introduce the concept of disorder ?
Well, we know what is heat. It is something proportional to the molecular speed
(remember eq. 12). A cold body is a body where the molecules have less speed,
so are characterized by a degree of order which is higher of a hot body. In a hot
body the molecules are moving more chaotically, so there is more disorder.

To clarify this in your mind just think to a cube of ice, a drop of water
and a cloud of water vapour. These systems are just the same material at
different temperature, what of these systems contains more order ? For sure
the cube of ice has more order than the other two. Because the molecules of
it are well organize in a cubic crystal. Instead water and vapour molecules
move chaotically around each other in all directions. If we want to compare the
level of order of these two who wins ? Of course water ! Why ? Because at
least water molecules are bind at a certain distance between each other. They
move around, but they do not go too far away of each other like in the gaseous
water vapour. So the level of order is inversely proportional to the level of
temperature. More temperature, less order. So if we leave a cube of ice alone
he can melt or sublimate, if we want a droplet of water to become a cube of ice,
we have to add external work. These observational statements are the key of
the second law of thermodynamics.

The second law of thermodynamics is somehow related not solely to purely
thermal process, it has a more general significance. For example let’s think of
another process, a drop of ink in a glass of water. What happens with time ?
At first the droplet of ink is very well visible in the middle of the glass. It has
a precise position within the glass, it has a certain radius, a certain shape and
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a certain color. So to describe it we a great amount of information. If we need
informations to describe a systems, it means we have a certain level of order in
it.

Please remember that a completely disordered system, contains very low
information. Or in other words, we need very few information to describe it.
Just think about white noise. What info you need to describe, if not that is
white noise at a certain volume? Instead think about another sound, the sound
of an instrument. How much information you need to describe it. . . ? More than
before ! You need to say which tone (frequency), what kind of instrument (its
timber, its spectrum) and this itself is a very complex set of information. So
more information, more order, less information less order.

Coming back to our example of the ink in the glass, after time passes the
droplet of ink gets bigger and bigger and at the end it dissolve in the water.
What we have after some time, is a glass of water with no apparent droplet
of ink, just a glass of water. The color of the water has changed a bit, it is
somewhat darker than before. How much information we need to describe this
system compared to before? More or less information? Less information ! Now
to describe our system we have just to say the color of the water. . . that’s it! The
information in the system has spontaneously reduced, this means that the total
disorder has increased. So this again is in agreement with the second principle,
as stated above.

5.2 Entropy:

We know now that it is impossible -in a macroscopic system- to reverse the
process thermodinamical processes, the disorder will always increase. However,
what will happen if we think small? If we imagine to have a very small system
with few molecules, and we increase the temperature just a little (δT ), is it
possible that energy flows also from cold to hot? Well, if we remember that
the temperature represents the average velocity of the molecules, if the physical
system is small, with very few molecules... maybe! When the system is very
very small, and the two bodies have almost the same temperature, of course we
can imagine that the temperature always fluctuates from the cold body to the
hotter and vice-versa freely.

So, from the point of view of differentials the second law of thermodynamics
is not valid and we can speak of reversible engines. A reversible heat transfer is
equivalent to frictionless motion in mechanics.

Please remember PV plot in figure 3 in the first chapter. Let’s consider two
points a and b at the same temperature. The work done of course is

W =

∫ b

a

pdV (48)

Since we are along an isothermal, we know that

p =
NkT1

Va
(49)
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so using eq (47)

Q1 =

∫ b

a

NkT1
dV

V
= NkT1ln

Vb
Va

(50)

If we move along another isothermal of course we can write an equivalent equa-
tion

Q2 =

∫ d

c

NkT2
dV

V
= NkT2ln

Vd
Vc

(51)

Now if we connect the points b and c, d and a with adiabatic curves in the
PV plot, we know from what we already studied that P1V

γ
1 = P2V

γ
2 . Using

PV = NkT we have:

P1V
γ
1 = P2V

γ
2 (52)

P1V1V
γ−1
1 = P2V2V

γ−1
2 (53)

NkT1V
γ−1
1 = NkT2V

γ−1
2 (54)

this is equivalent to
TV γ−1 = constant (55)

This lead to this two equations:

T1V
γ−1
b = T2V

γ−1
c

T1V
γ−1
a = T2V

γ−1
d (56)

just dividing these two equations we understand that

Vb
Va

=
Vc
Vd

(57)

This means that the logarithms in eq (50) and eq(51) are identical, so dividing
the two by T1 and T2 respectively, we obtain this very important final equation:

Q1

T1
=
Q2

T2
(58)

This is the equation expressing the entropy of a system. The value Q/T of two
bodies never changes in a reversible engine. We can also write eq (58) this way

Q1

T1
= S =

Q2

T2
(59)

where S is called the entropy of the system. In a real case, of course, the entropy
will increase, and will be given by this integral relation

Sb − Sa =

∫ b

a

dQ

T
(60)

So another way to express the two laws of thermodynamics is as the following:
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first law: the energy of the universe is constant
second law: the entropy of the universe is always increasing

Thermodynamics is a complex discipline that involve deep study and we do
not want to go too in details here, however please try to consider the philosoph-
ical implication of the few concept that we have given here.

6 The linear thermal behaviour of an air column

We would like to know if our theory developed up to here, is able to explain
some everyday observation. If we climb a mountain, we observe a regular linear
drop in temperature, can we explain it somehow? Let’s again use differentials,
in simple words we think small and consider a column of air of small section.
What is the difference of pressure between two slices of the column very near
each other?

We call p1 the pressure in the upper slice and p0 the one on the lower one.
Since the pressure diminishes with hight we can write

p1 = p0 + ρgdh (61)

dP = −ρgdh

where ρ is the density of the air (mass over volume), g the gravity and dh the
vertical distance between the two slices. We notice also that from the ideal gas
law the density is immediately expressed as ρ = mP/kT , where m is the mass
of one single molecule of gas (just multiply PV = NkT by the mass of a single
molecule and divide by the volume V to obtain the density ρ = mN/V ). We
can rewrite the above as:

dP = −mP
kT

gdh (62)

Now, we consider that the main reason of temperature drop at high elevations
is due to the continuous convection movement of air from bottom (hot air) to
top (cold air). This rise of air produce a variation of pressure and temperature.
Since air is a bad temperature conductor and since the rise is slow we can
approximate this variation as adiabatic. This means we suppose that there is
no exchange of heat with other air layer, the temperature drop we will calculate
will be due only to the air expansion.

PV γ = const

We need a relation with temperature, so we use the ideal gas formula PV = NkT
and extract V V = NkT

P and substitute in the above, we obtain

P

(
NkT

P

)γ
= const (63)

T γ

P γ−1
= const
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T

P
γ−1
γ

= const

T = const ∗ P
γ−1
γ

notice that constant values were included in const and that we extracted the
root to the γ. Now we want to differentiate, to do that we fist use logarithms
on both side to get rid of exponential, then we differentiate the last of equation
63:

log T = log const+
γ − 1

γ
logP (64)

dT

T
=
γ − 1

γ

dP

P

so in conclusion, we now that

dP =
γ − 1

γ

P

T
dT (65)

If we substitute this in equation 62, we eliminate dP and obtain a linear relation
between the variation of temperature and the variation of height.

dT =
γ − 1

γ

mg

k
dh (66)

Actually, putting in this equation reasonable MKS values, like γ = 7/5 (biatomic
gas), molecular mass of air m = 510−26 Kg (28.8 grams over the Avogadro
number 6 ∗ 1023), and k = 1.3810−23 we obtain

dT

dh
≈ 0.01 deg

meter

about 10 degree per Km, the value observed experimentally ! This was one of
the first self-evident proof of the success of Kinetic theory.

7 The distribution density in an air column

Let’s consider a gas that is inside a big container. This gas is an ensemble of
molecules, that are freely moving around. Each molecule have its own weight.
This weight is surely affecting how the molecules behave. The molecules at the
bottom of the room will feel the pressure of all the molecules that are above.

What is the effect of the weight? Can we deduce a mathematical relation
to describe the effect of the weight on the gas? To answer we can imagine to
have two parallel layer of area A that are separated by a very small infinitesimal
distance dh. We consider that the differential force acting on a single layer is:

dF = N < F > (67)
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Figure 4: The molecules of gas are indicated by dots. We consider the forces
acting on two imaginary planes of area A. Each molecule weight is F = mg and
the distance between layer is an infinitesimal (dh).

where < F > represent the average force of a single molecule and N the number
of molecules enclosed in the box between the two layers (see figure 4). Please
do not forget that this box is very small and its thickness is infinitesimal.

We know that the number of molecules can be calculated if we know the
molecular density of the gas. This value is usually known and it is indicated
by the letter n, n = N/V , where the volume V is in our case the area of the
imaginary box: A multiplied by its infinitesimal thickness dh.

Now, the force exerted by a single molecule is just its weight, that is < F >=
−mg. Let’s put all these things together:

F = −mg
n = N

Adh (68)

If we substitute these in eq (67), we have

dF = nAdh(−mg) (69)

If we remember that the pressure is the force per unity of area, then we have:

dP = ndh(−mg) (70)

Now, dP is the difference in pressure between the two surfaces, we know that
for an ideal gas:

PV = NkT

P = nkT (71)

We use the concept of differentiation and we obtain from the above eq (71)

dP = dnkT

We now substitute that on eq (70) and we have:

dnkT = ndh(−mg) (72)
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To integrate we simply put together the differential variables dn and dh:

dn

n
= −mg

kT
dh (73)

Taking in account that kT and mg are constant values (they do not change with
the hight h), it is very easy to integrate this differential equation:∫

dn

n
= −mg

kT

∫
dh (74)

that results in
log(

n

n0
) = −mg

kT
∆h

applying the exponential function to both sides:

n = n0e
−mgkT ∆h (75)

here n0 is the density at h0 (∆h = h − h0). What this equation tells us ?
First of all, we understand that the gas density varies with the hight h. So, if
we have a very big volume, the density of the gas in it will change with hight.
Equation 75 shows an exponential decay, so the gas at the bottom (∆h near
to zero) will have a higher density than gas at the top (∆h higher). If the gas
is air, we immediately understand why if we are at sea level the air density is
higher than up hill.

You can notice something more. The exponential in eq (75) is modulated by
the coefficient mg, the weight of the molecules. We know that Oxygen (atomic
mass 16) is heavier than Nitrogen (atomic mass 14), so if the air is a mixture of
the two, equation 75 tells us that Oxygen should diminish earlier than Nitrogen.
This is exactly what happens if we climb an high mountain. Not only the whole
air gets thinner, but also the Oxygen drops faster than Nitrogen, so the relative
ratio of Oxygen in the air drops.

Amazingly all these real life facts are deducible by the equation 75 that we
just found by simple elementary calculations based on the ideal gas law !

Example:

Lets calculate how much the ration Oxygen/Nitrogen in air changes with hight.
Suppose you are hiking uphill and measure the Oxygen/Nitrogen ratio at a
starting point and this result to be R1. When you climb 2000 meters and
measure again obtain R2. Use what learned here to deduce the variation of R
of this ∆h=2000 meters hight difference.

We simply have to apply equation 75 several times. First of all, lets consider
the variation of concentration of Oxygen for a rise of 2000 meters we have:

no = no0e
−mogkT ∆h (76)

and for the Nitrogen at same hight we have:

nN = nN0 e
−mNgkT ∆h (77)
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here mo and mN represent the mass in grams of one atom of Oxygen and
Nitrogen respectively. Similarly no represents the density of Oxygen atoms and
so on. Now we divide the last two equation by each other and obtain:

no

nN
=

no0
nN0

(e−
mog
kT ∆h + e−

mNg

kT ∆h) (78)

this is:
no

nN
=

no0
nN0

e−
g∆h
kT (mo−mN ) (79)

Now we simply have to rewrite our equation and put the correct numbers
(we assume that the mass of an atom is its atomic weight divided the Avogadro
number NA=61023, T=300, g=10, k=1.38 10−23 and mo=16g, mN=14g)

R = R0e
− g∆h

kT

(mo−mN )

NA (80)

R = R0e
− 10∗2000

300∗1.38∗10−23∗6∗1023 (16−14)∗10−3

(81)

R = R0e
−0.0161 = 0.984 ∗R0 (82)

so the ration of Oxygen diminishes of about 1.6%, which is in the order of
magnitude correct.
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8 The Boltzmann Law

Now let’s consider what we learned in the previous chapter more generally. Let’s
consider a force F between any particles of a gas. In the previous chapter the
only force acting on the particles were the own particle weight. Now this force
can be ANY force, for example energy potential between the gas particles, due
to mutual attraction... or anything else. The gravity on the previous chapter
example was acting only on the Z axis (the vertical direction). Instead, the
more general force we choose here acts simultaneously on the three dimensions.
For example: the attraction between molecules is a force that has no privilege
direction. Any molecule feels a force coming from other nearby molecules on
any direction in space.

However, now for simplicity we choose one arbitrary direction and we con-
sider what is happening on our system of molecules along this single direction.
Let’s call this direction x and consider two parallel plane surfaces of area A be-
tween the gas. These surfaces are normal to the direction x as shown in figure
5.

Figure 5: A generic force F is acting between particles. The force is arbitrary
and acts along all the directions in space, however we consider only the effects
of the force along an arbitrary axis x as represented in this sketch.

Exactly as we did on the previous chapter, the difference of force dF acting
between these planes can be modelled as the net total force acting on every
single particle, multiplied by the number of particles in the volume between the
two surfaces. We can write this total force as:

dF =< F > ∗n ∗ dV

where < F > is the average force for a single gas molecule. The n∗dV is the gas
density n (= N/V ) multiplied by the volume between the two surfaces (again
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dV = A ∗ dx where dx is the distance between them). So we have:

dF = < F > ndV

dF = < F > nAdx

dP = < F > ndx (83)

P is the difference in pressure between the two surfaces dF/A, we know that
for an ideal gas:

PV = NkT

P = nkT (84)

With n we mean the gas density n = N/V , in other words: the number of
molecules per unity of volume. Due to the variation of pressure the density
varies. We use again the concept of differentiation and we have from the above
eq (85)

dP = dnkT

Substituting in eq (83) we have:

< F > ndx = kTdn

This is an easy differential equation. We know that for any product < F > dx
corresponds an equal and opposite work −dW , we gather the relevant variables
dx and dn:

−dW︷ ︸︸ ︷
< F > dx = kT

dn

n

then we take the integral, we remember that kT are constants:

−
∫
dW = kT

∫
dn

n

−∆W = kT log(
n

n0
)

−∆W

kT
= log(

n

n0
)

we suppose ∆W = W (the zero potential is set to zero), then apply the expo-
nential function to left and right of the equation and we have:

n

n0
= e−

W
kT

n = n0 e
−W/kT (85)

this is the dependence of the gas density, for any potential force acting on
the molecules. The generality of this relation, that is usually called Boltzmann
law, is something awesome. It says that the gas density of an ideal gas is

23



related in a negative exponential dependence with the potential energy relative
to the forces acting on these particles. Please remember that the relation we
obtained above is correct even if the force F is a realistic force that act on the
three dimensions. Eq (85) limits the dependence of the density n along the one
dimensional direction x. However, the force F that causes the dependence can
be a general force acting an all three dimensions.

Now let’s do the last generalization: can we represent the gas density n =
N/V in another way? Clearly, n it is something proportional to the probability
to find a gas molecule in a given volume V. More molecules in a volume,
higher probability to find a molecule, less molecules, lower probability. So, if we
like, we can rewrite the Boltzmann law like this:

f = const e−P.E./kT (86)

where f is the distribution probability of finding a gas particle, P.E. represents
a general potential energy and const is any constant. In many textbooks the
Boltzmann law is written in this more general form. You can read eq (86) as:
the distribution of a certain physical property f decays exponentially with speed
proportional to the energy potential relating the physical property and inversely
proportional to the system temperature. Amazingly enough, equation (86) is
applicable in a multitude of real physical systems !

9 The concept of distribution of a general po-
tential

The force acting on a particle is in general the derivative of a potential energy.
For every force there must be a potential energy that generates this force. This
force is the derivative of this potential, multiplied to a minus sign to indicate that
the potential is always opposite to the force. So if we know the mathematical
expression of the potential we can calculate the expression of the force. This is
one of the great principles of nature that is at the basis of physics.

In the example of the air column that we discussed above, the potential
energy is

dW = −(mg)dh

where dh is an infinitesimal variation of height, m the average particle mass and
g the gravitational constant g = 9.81m/sec2. In this case the force F is then

F = −dW
dh

= mg

This is true in the simplest case of an air column where molecules are subject
only to the force of their own weight. But what happens if we consider a
more complex case? For example let’s suppose that each molecule has a slight
attraction to the next one. This is actually true. Even gas molecules, if they
are placed very near each other they feel a small force of attraction. That’s
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why if we remove the kinetic energy (reduce temperature) the gas tends to
transform to a liquid. Then, let’s ask ourselves: what is usually the potential
energy responsible of the forces between two molecules of gas ? Of course we
do not know this answer exactly. However, we can firstly consider a very simple
case: two masses (our molecules) connected by an ideal spring. We choose this,
because we know how a spring works. The system we imagine looks like a simple
bi-atomic molecule...!

We know that for the Hook law, a spring gives a force F = −kx where x is
the extension of the spring respect to a rest position x0. In our case if we call
the distance connecting the two molecules as R and the rest position as r0, then
the force between them is

F = −k(R− r0)

.
Let’s remember that in general dW = −Fds where ds is the displacement

along the direction of the force. Then, we multiply our dW by a small dis-
placement dR, we obtain the infinitesimal potential energy that generate the
force

dW = FdR = k(R− r0)dR

As we said, if we integrate this we obtain the potential energy (P.E.):

P.E. =
1

2
R2k − r0Rk (87)

We can plot this potential and its relative force, see figure 6.

Figure 6: The potential of an ideal force connecting two molecules: a perfectly
elastic spring. On the top we see the potential, at the bottom the force.

This was an ideal case, however, in reality the potential between two gas
molecules usually has a shape similar to that in figure 7 (near: repulsion, far: at-
traction, very far: no-effect). In a gas system we do not have only two molecules,
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but many of them. So using the same integration methods, it is possible to de-
rive the total potential energy W just summing up all the contributions, like
this:

W =
∑
ij

Vij (88)

Figure 7: A schematic representation of the potential shape of two molecules
attracting each other (dark line) and the corresponding force (red line).

Now let’s do some consideration using the general Boltzmann law. From
eq(88) the probability to find a molecule will be:

f = const. ∗ e−
∑

ij
Vij/kT (89)

What will happen if the temperature changes? If the temperature decreases to
low values then the term W =

∑
ij Vij will be dominant. So the probability to

find particles at the minimum potential r0 will be higher (because in that point
W is minimum, so the exponential is maximum).

On the contrary, if the temperature increases, and get higher than the total
potential W =

∑
ij Vij , exponent gets close to zero for any value of R, even the

minimum point r0 will have little influence. The exponential function becomes
nearly one for every potentials. This means that the particles will be randomly
distributed (same probability to find them at any distance).

What we have just described in very rough terms is the phenomena of evap-
oration. If the temperature is low, majority of particles will be located ad a rest
distance to the others (like in a solid or a liquid), if temperature increases, the
particles will fly away and they will be randomly separated, exactly like in a gas.
Equation 88, despite its simplicity and the basic assumptions we used to derive
it, it is able to explain well the phenomenon of evaporation of materials with
temperature. This is already a good result, but we achieve it without knowing
the real shape of the potential W . Let’s try to go further and assume to know
the mathematical expression of the potential.
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9.1 Physical states: gas, liquid and solids

Let’s consider again the hypothetical situation in which molecules are connected
by a simple spring. In this case, as we said above, the potential is derived by
the Hook law as in equation 87. Let’s substitute it in the Boltzmann formula,
we obtain the Boltzman distribution:

f = const. ∗ e−( 1
2R

2k̄−r0Rk̄)/kT (90)

The symbol k̄ is used to distinguish the Hook constant from the Boltzmann
one. This relation tells us the probability to find a molecule in function of the
molecular distance. We use a computer and make a graph from eq (90). The
simulation is done in -so called- arbitrary units, putting the const., k̄ and k
values to one. Even if these parameters loose real meaning, the distribution
shape does not change. Result is shown in figure 8. Let’s try to understand

Figure 8: In this simulation of eq. (90) we run temperature T = 10 to T = 1000
(direction of temperature is indicated by the dark arrow ”Temp”) and set the
rest position to r0 = 5. Clearly, as the temperature increases the potential gets
less important, because the function tends to a constant value everywhere. All
molecules tend to be sparse and randomly placed far from the minimum (gas
state). If temperature is low compared to the potential, the max probability to
find the particles is when they are at the minimum of potential, exponential is
at maximum. This can be the case of a liquid or a solid.

its hidden physical meaning: first of all remember that in this plot there is
not explicit dependence on the position of the molecules. Only their relative
distance is considered here. So our graph deals about something that can be
located anywhere in space.

On the horizontal axis we have the distance between molecules R. In the
case of our ”Hook law” potential, the minimum potential is realized at the rest
position, R = r0 = 5 in our simulation. Let’s concentrate first on the ”Hot”
curve, that has been plotted for high values of the parameter T (T = 1000).
For this curve we can say that: at any give point in the gas, if we look at the
distance between molecules (also called intermolecular distance), statistically
we see that they have all similar probability to exist. Instead, if we are at lower
temperatures, we see that the curve has a maximum. And this maximum is ex-
actly at the rest position r0 = 5 ! The curve goes also to zero very quickly. The
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physical meaning is: lower intermolecular distances are very probable, whereas
higher ones are not.

Let’s repeat that this specific distribution is valid in any given point of space.
In any point of space of our gas, we find the same distribution of potential, in
other words in any point of the gas the intermolecular distances have a prob-
ability to exist distributed as the Boltzmann law in figure 8. Remember: the
distribution has always the same shape (equation 89), but the values of this
distribution are different depending on temperature values and they represent
different physical situations in the real world (a gas, a liquid or even a solid).

10 Speed distribution in an Ideal gas

In the previous chapters we derived the density distribution of the gas molecules
for an ideal gas, in air. This time we consider about the speed of the molecules.
To understand what is happening with the speeds, we have to remember these
important things:

1) we are in equilibrium, so the velocity distribution must be the same everywhere in any point of the gas.
2) no forces are acting on the particles, only their own weight −(mg)
3) molecules density is known, is n = n0e

−(mgh)/kT

If this three conditions are true, it is intuitive to understand that the distri-
bution of velocities should be somehow related to the term e−(mg)h/kT . In fact,
let’s consider two horizontal lines h = 0 and h = h. At h = 0 we will have n0

particles, instead at height h = h there are n particles.
What’s the ratio in number between the particles in these two levels? We

know that higher up there are less particles (see condition ”3)” !) and that the
ratio is: e−(mgh)/kT . We also know that everywhere the distribution of speed
should be the same. If there are no other forces than the weight −(mg), then
let’s go down at level h = 0 and consider the velocities of the particles. For sure
the particles missing at the level h = h should be those that do not have enough
kinetic energy to reach that place. What is this energy ? It is the potential
difference between the two heights, so:

Ek = dW = −mgh

Let’s call u the average speed, then mu2

2 = mgh.
So we can say that all those particles that do differ in kinetic energy of

−mu2/2 are those that will be missing at the higher level h = h. If this is true
we can write the ratio of kinetic energy at h = 0 :

nv>u(h = 0)

nv>0(h = 0)
= e−(mgh)/kT = e−mu

2/2kT (91)

where nv>u means the number of particles with speed higher than u. In other
words: molecules of lower speed have less energy to reach higher positions h. So,
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Figure 9: Scheme of the particles in motion in air. Less particles reach the
higher level h = h because of gravity. If we think in speed, we can say that only
the particles that have speed higher than u can reach this level. In other words,
only those molecules moving up at h = 0 with sufficient velocity can arrive at
height h.

we simply obtained the distribution of speed within our gas. . . ! To emphasise the
distribution properties of the relation, in several book you can find the general
differential form of this equation:

f(u)du = Ce−mu
2/2kT du (92)

where we indicate with f(u) the velocity ratio and with du the difference in
average velocity. This is usually called the Maxwell distribution of velocities,
because Maxwell derived it the first time in 1859. Notice the presence of the
square on the independent variable u2, this gives the distribution a shape of a
Gaussian curve (see figure 10).

Figure 10: A graphical example of distribution of velocities.

Remember: eq. (92) this is the ratio of the number of particles of certain
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velocities in any single point of space. It is not the ratio of of velocities between
h = 0 and h = h!

You may ask: ”Wait a second! We know that higher up there are less
particles because of the gravitational term −mg in the Boltzmann distribution.
So presumably higher up there is less speed too! Why you say that in any point
of space the distribution is the same ?!?”. If you ask yourself that, you are
perfectly right. That’s why higher up in mountain air is thinner (n decreases)
and temperature is colder (molecular speed is reduced). However, eq. (92)
represent the only the ratio between velocities, not the absolute value. The
average velocity of gas particles can change with height, still the ratio between
velocities can be maintained for every point in space accordingly to eq. (92).

11 Brownian Motion

Now we know that particles of a gas are moving around with different speeds. At
any point in space we can meet a particle of lower or higher speed. Let’s suppose
we have a small ball immersed in a gas. This ball is a macroscopic object, so it
is much bigger than the gas molecules. Let’s call this particle a pellet. If we put
the pellet in the middle of a gas, we know the gas particles move around and
collide with the pellet continuously at any moment. This continuous collision
is called also bombardment. So the pellet is bombarded from all directions by
the gas molecules. The molecules, do not have all the same speed or direction.
However, they have a distribution of speed, as we learned above.

Figure 11: A graphical example of chaotic bombardment of a pellet by gas
particles.

Now, let’s think about this: all this collisions come homogeneously from all
directions, we may think that the total force exerted on the particle is zero. Is
it ? Well, not ! Let’s try to calculate this and understand why. Let’s imagine
that the pellet is set initially in the center of our coordinates defined by the
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point R0 =(0,0,0). Its position relative to this point is defined by the vector R̄.
After a single collision, the pallet moves to the left, or to the right, or up or any
direction. Let’s call this random movement L̄. So the final position after N = 1
collision is

R̄1 = R0 + L̄

where R0 is the start point. After two collision will be

R̄2 = R̄1 + L̄

and after three
R̄3 = R̄2 + L̄

Let’s not forget that despite the fact that we always write L̄, every time we have
a different value. L̄ is a it random force! In general we have

R̄N = R̄N−1 + L̄

What happens if we square right and left of this equation ? We will have

R̄N · R̄N = (R̄N−1 + L̄) · (R̄N−1 + L̄)

so we have
R2
N = R2

N−1 + L2 + 2R̄N−1 · L̄

this equation is impossible to solve, because every collision L̄ is different in value
and different in directions. As usual in statistical mechanics, let’s consider the
average values of these terms.

< R2
N >=< R2

N−1 > + < L2 > +2 < R̄N−1 · L̄ >

The first two terms are average of scalars (a scalar means a number, not a vector
with direction and value, but only a value), so their average can be indicated for
simplicity as only R2

N , R2
N−1 and L2. Instead the remaining term 2 < R̄N−1·L̄ >

is the product of two vectors. We have to consider again that every time the
collision occurs in different direction. These are random collisions, so they are
spread homogeneously in all directions. The average vector L̄ must be null. If
this is the case, all the term 2 < R̄N · L̄ > must be null. So at the end we have:

< R2
N >=< R2

N−1 > + < L2 > (93)

This equation is recursive, it means that the value of R at the N th collision is
equal to the value of R at the previous collision plus the average length of the
collision L. If the collision happens 10 times, we have R = 10 ∗ L. So finally
can write

R2 = N < L2 > (94)

that means that the distance of the pallet from the start point R0 = (0, 0, 0)
increases like the following:

R =
√
N < L > (95)
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So if we can estimate the average length of a free movement < L >, we will
know the total distance after N collisions. This is called Brownian drift. The
thing you must notice is that even if the collision are totally random, this value
is not zero !

We learned from eqn. 95 that the distance R increases with the number of
collisions. But -of course- in real life, we do not know the number of collisions. . . !
In a real problem, what shall we do ? What is the real variable that we can
measure, instead of the number of collisions N? Clearly, on average, we have
a constant number of collision per unity if time. So, N is proportional to time
N = rt, where r is the rate of collision (number of collisions per unity of time).

The distance from the start point increases with time. From eq (94) we can
state:

< R2 >= N < L2 >= rt < L2 >= αt (96)

Where α is then r < L2 >. As said above, the L̄ is the average movement that
the particle does after a collision. We can call this free mean path and indicate
it with the letter λ. So λ =< L̄ >, it represent the average length of free
movement the particle does between collisions. The term free is given because
we suppose that during this movement the particle is totally free of forces, so
the movement is a straight line of uniform speed.

Now, let’s try to estimate this free mean path. Well, if we know the average
velocity of the particle (let’s call it vo), then we can easily say:

λ =
vo
r

(97)

or λ = voτ if τ = 1
r (we can call τ free mean time). Please notice that the

velocity vo is not the velocity of the gas molecules, but the velocity of our pellet
macro-sized particle that is bombarded by the molecules.

If you remember the laws of ideal gas, you know that the average velocity of
the gas molecules is known, it depend on the temperature and using eq. (12):

1

2
mv2 =

3

2
kT (98)

Gas molecules of this average velocity will collide with the particle. For the
conservation of momentum, the particle -on average- will move away with this
speed:

movo = mv (99)

then taking in account eq. 98 we can write:

vo = m
mo
v

3

2
kT = 1

2m(mom vo)
2 (100)
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doing the proper simplifications, you can obtain easily the expression for the
average particle velocity:

vo =

√
3kTm

mo
(101)

If we substitute this in our previous expression for λ eq. 97, we have finally

λ =

√
3kTm

mor
(102)

Now substituting this in the expression eq. (96) that we where looking for, we
have

R2 =
3kTm

m2
or

t (103)

What is the rate of collision r ? For sure it is something related to the
temperature of the gas. If the gas has more energy, presumably there will
be more collisions. However, this parameter must be connected also to the
geometrical dimensions of the particle. If the particle is bigger will receive
many collision per second, if it is very small just a few. Let’s suppose that
the gas molecules are so small that their size can be neglected compared to the
dimension of the particle. Then the probability to have a collision will depend
only on the size of the particle and the molecular density per unit of volume n.
If the section of the particle has an area σ (usually called cross section) then
the number of collisions N will be

N = σndx (104)

where dx is a infinitesimal displacement in space.
Now, in the dx direction, the gas has a kinetic energy 1

2kT that is equal to
1
2mv

2. We can assume that the infinitesimal displacement dx correspond to the
molecular movement in the same direction. So N = σnvdt, that yields:

r =
N

dt
= σnv (105)

Because 1
2kT = 1

2mv
2 easily we obtain:

r =
N

dt
= σn

√
kT

m
(106)

then:

R2 =
3
√
kTm3/2

m2
oσn

t (107)

This equation show how the Brownian motion depends on temperature and

other important parameters. All the group of terms 3
√
kTm3/2

m2
oσn

represent our

parameter α that was defined previously, eq (96). α simply tells us how fast is
the Brownian motion; it is a kind of Brownian ”speed”. It is not a real speed
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because R is the distance from a center point R0 = (0, 0, 0), so α tells us how
far are we from that point, but does not tell us exactly where we are! We only
know that the pellet goes away in a random direction within a radius R given by
eq (107). Try to imagine for example that the particle mo becomes very heavy,
or its size gets bigger (σ increases)... the total movement becomes slow because
of the inertia or because the total amount of collision average out to zero. The
same will happen if the molecular density increases. If instead the temperature
T grows, or the gas molecules are heavier, the Brownian movements get faster
and quickly the particles run away, as it is logical to be. Our simple model make
sense !

12 Thermal Noise

The Brownian motion is caused by the temperature. We know that the motion
of the particles is energy, and that the temperature we feel in an object is simply
the kinetic energy of the molecules of that object. For this reason the Brownian
motions have consequences generally, on all possible systems! For examples lets
consider again our pellet immersed in a gas. We know that the kinetic energy
of the gas, for simplicity we consider only one dimension x, is

Egas =
1

2
kT

we know that this must equal the average kinetic energy of the pellet, so

1

2
m < v2

x >=
1

2
kT

where m is the mass of the pellet. So we can say that

< vx >= ±
√
kT

m

What does this means in practice? It means that because of the thermal energy,
whatever is the velocity of the pellet, there is always an average thermal velocity
that adds up to the total velocity of the pellet. This velocity is very small, but
it always exist. For a pellet of one gram it is (let’s use MKS):

m = 0.001Kg (108)

k = 1.3810−23J/ ◦K

T = 300 ◦K

< vx >= ±6 ∗ 10−8m/sec

very small, but not zero. This fact also has implications when we want to mea-
sure the velocity of the pellet in the gas, this velocity can be big, because there
will be other external forces we put on the pellet. However, our measurement
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of the pellet’s speed will be disturbed. We cannot know the speed of the pellet,
with a precision better than < vx >. In mathematical terms: if the real velocity
is V0, what we actually measure is

V = V0± < vx >

This is the effect of the thermal noise on our measure.

Figure 12: The scheme of a light-beam galvanometer, a Laser light is reflected
by a mirror suspended on a very low friction string. The reflection at angle θ is
affected by an error of < θ > due to thermal noise, as represented in the graph.

This fact applies in any system we can think of. Where there is temperature
(thermal energy) there is this thermal noise that affect measurements.

For example we can consider a mirror suspended by a small string, like in
figure 12. In this case the thermal energy 1

2kT will be equal to the rotational
energy of the mirror. If you remember from the physics classes, this energy is
1
2Iω

2
0 < θ2 >, these two should be equal so we have:

< θ >= ±
√
kT/I

ω0

This effect of thermal noise can be verified experimentally in the laboratory! A
variety of examples can be dome. We do a last one: in electric circuits. The
energy accumulated in a inductance for example 1

2LI
2 will be equal to 1

2kT with
similar consequences. Can you think to some other examples in another field?

13 Evaporation

As you remember from previous chapters, the equation 86 express the fact that
the probability to find a particles at a certain distance is related to the potential
energy (P.E.).

f = const e−P.E./kT
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This consideration is usually called kinetic theory because, as you remember,
equation above is derived from the fact that we demonstrated that the kinetic
energy in one dimension (for example the dimension “x”) Ek = 1

2m < v2
x > is

equal to the thermal energy

1

2
m < v2

x >=
1

2
kT (109)

Now, let’s consider the evaporation of a liquid, and let’s try to apply the same
concepts of kinetic theory, in order to find the equation of such system. Let’s
consider a closed box filled with liquid at a certain temperature. Because there
is temperature, we know from kinetic theory that there will be molecular speed.
If so, why the molecules do not fly away like a gas ? Well, because there is a force
keeping them together. We do not know exactly the mathematical formula for
this force, but let’s assume that we know the shape of it. The force is represented
in figure 13.

Figure 13: The potential energy between liquid molecule. We remember that
force is F = dW

dx and it is represented in clear color in the picture. dW represent
the difference in potential energy, necessary to remove the particle from the
attraction. This energy is often called work function

From the shape of the curve you can understand that if the temperature is
such that Ek < dW then the particles have energy less than dW , they seems to
be trapped near each other. So they cannot escape in the gas state.

Is this really right? Well, not! We know that the distribution of velocities
is an exponential decreasing curve that never reach zero (equation 85). So, for
sure some particle will have a speed much higher than the average Ek = 1

2kT .
So -for sure- these few molecules will leave the liquid and become gas. So in our
box we will have a liquid in equilibrium with a certain small quantity of gas.
This gas is also called vapour. The Energy dW necessary to leave the liquid and
become gas, is called work function and often indicated by the letter Φ.

Now, let’s consider this problem: in our box of volume Va, suppose we have
a vapour with n molecules per unity of volume. How many molecules will be in
the vapour phase, compared with the number that are in liquid ?
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The solution is not so difficult. Lets suppose that every molecule occupies a
volume Va. Then the number of molecules per unity of volume in the liquid is
1/Va. So we have n1 = n molecules per unity of volume in vapour phase, and
n2 = 1/Va molecules per unity of volume in liquid phase.

Now we have to remember equation 85. Lets consider the two situations:
gas phase and liquid phase. We write eq. 85 for each case:

n1 = n0 e
−W1/kT (110)

n2 = n0 e
−W2/kT (111)

now we simply substitute and have

n = n0 e
−W1/kT (112)

1

Va
= n0 e

−W2/kT (113)

n0 is not relevant. It is simply the density of molecules for the initial potential.
It is a value that we do not know, and we do not care to know. In fact, lets
divide eq.112 by eq.113 and we have

nVa = e−(W1−W2)/kT (114)

the difference in potential energy W1 −W2 that we called before dW , is the
work function, also called Φ, so we have finally:

nVa = e−dW/kT (115)

What does it means? It means that the ratio of the density in liquid phase
and in gas phase, is proportional to the exponential of some energy (the work
function) divided by kT . In other words, if we have a big work function dW ,
this exponential is a big number, and small variations of temperature, make big
variations of this ratio.

Anyways, please remember that this equation is the result of our model. So
there are assumptions we made that we must remember:

1) we are in equilibrium so the velocity distribution must be the same everywhere. This is not true in reality
temperature is assumed constant, but it is not

3) the volume occupied by one particle Va is not constant !
If the temperature changes, also the volume occupied by a particle changes(the liquid expands).

4) The real situation is much more complicated, and we cannot obtain a formula.
We use this equation 115 because it is simple and it is demonstrated that is valid in good approximation.

Lets remember a most important concept in physics. Everything we know
are results of our models. Our models are not the true reality of physics. But,
we just represent physics with our models.

37



Now let’s try a very important test. Let’s use another model, and describe
again evaporation.

We have our liquid in the closed box. Some of the molecules have escaped
from the liquid and become vapour (gas). Of course, some of these gas molecules
will hit the surface of the liquid, and become liquid again. How many are them
? Let’s think small and imagine a small volume of gas, of area dV . This small
volume of gas it is located exactly adjacent to the surface of the liquid. How
many molecules per unity of time, will hit the liquid in this small volume ?

Well, we know that the gas density per unity of volume is n. Then we know
that the total number of molecules N in this volume is -of course- N = n ∗ dV .
If this volume has an area A, then dV can be written also as A∗dx, where dx is
the movement toward the liquid in a small time dt. We know that the average
speed of the molecules is v, so we can write

N = nAdx

N = nAvdt (116)

If we choose a unity of time (one sec) and a unity of area (one square meter) then
the number of molecules that condensate on the liquid per second per square
meter is:

Nc = nv (117)

Figure 14: A scheme of the condensation-evaporation process. A liquid is in a
box a temperature T. Some molecules of the liquid win enough energy to escape
and become a gas. Some gas molecules, on the contrary, hit the surface and
condense in the liquid.

Condensation, means a transformation of phase, from gas to liquid. What
about the opposite transformation evaporation from liquid to gas ? Our question
is: how many molecules per unity of time leave the liquid ?

If a liquid molecule acquire enough energy, it can win the energy gap dW
and become a gas molecule. We know from previous kinetic theory (Boltzmann
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Law, eq. 85) that the probability that this happens is e−dW/kT . Let’s do some
simple considerations: we can understand that the number of molecules leaving
the liquid and becoming a gas should be proportional to the number of atoms
near the surface, per unity of area, divided by the time it takes to leave the
surface, multiplied by the probability to leave the surface. In mathematical
terms this is:

Ne = (
N

A
)(

1

te
)(e−dW/kT ) (118)

In the case of liquid, every molecule is packed near each other, the number of
atoms per unity of area is simply A/As, where A is the total area and As is the
area occupied by a molecule. To know how many leaves per unity of time, we
have to estimate the time it takes to leave. We know the average velocity v,
and we suppose that the molecules that leave are the only ones adjacent to the
surface, not the ones deep inside the liquid. So the distance they run is only
one layer of molecules. If D is the thickness of one molecule layer, the time it
takes is te = D/v. So the product

A

As

v

D
(119)

gives us the number of molecules that leave the area A per unity of time if all
the molecules were leaving the liquid. This is not true ! Only the fraction that
has enough energy to win the work function will leave. This fraction is e−dW/kT .
In conclusion, we fix A = 1 (per unity of area) and we have:

Ne = (
1

As
)(
v

D
) e−dW/kT (120)

Now we notice that in situation of equilibrium, the number of molecule that
condense Nc (eq. 117) and the number that evaporate (eq. 120) must be the
same. So we have:

nvgas = (
1

As
)(
vliq
D

) e−dW/kT (121)

Now, let’s consider finally two things. One is easy: the area As of the
molecule, multiplied by its thickness D is of course the volume occupied by a
molecule Va = DAs. The other is less intuitive: the velocity vgas of the gas
molecules, and the velocity vliq of the liquid on average are equal ! Why ?
Because we are in thermal equilibrium. We know that 1/2mv2 = 1/2kT , so if
this was not true, we would have two different average energies and temperatures
in the gas and the liquid, and this is not possible. So putting vgas = vliq = v
and Va = DAs in the equation, we obtain again equation 115 !

nVa = e−dW/kT (122)

This is a fantastic results ! Why ? Because it tell us that our approximate
models work. To obtain equation 122 in the first case we started from a physical
model based only on the ideal gas energies. The second time we started from a
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molecular mechanical model, using equilibrium and the Boltzmann law concept.
We arrive to the same result. This is the power of modelling with statistical
mechanics.
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14 Diffusion process

Lets consider the particles of a Gas. They move in all direction, and their
energy is 1

2kT as we know very well. Of course the particles will collide each
other often. How often ?

Well, this depends on many things. Of course if the particles density is high,
we expect to have more collisions. Each particle move straight, undisturbed
for a while, then it collides elastically with another particle. The word elastic
means that the collision preserve the kinetic energy. In other words, the kinetic
energy 1

2mv
2 of the particle before and after the collision remains the same.

Let’s suppose to have a very big box, with few gas particles in it. Let’s suppose
that, in this box, each particle has on average one collision every one minute.
It’s just a supposition. So we can call τ = 60sec the average time between
collisions of any single gas particle.

Of course, the number of collisions that this particle is experiencing, is de-
pending on time, and on average will be equal to

N(t) =
t

τ
(123)

This equation is very easy to understand: after a time t = τ , on average, the
particle will have experienced one collision. If t = 2τ , two collisions and so on.

So let’s as ourselves: what is the probability to have a collision ? If we know
that every τ = 60secs we have a collision, after only one seconds we have 1/60th
probability to have one, and after 30 seconds, we will have 1/2 = 50% to have
one. This means that dt/τ is the probability to have a collision for one particle.

Now let’s think about what’s happening collectively. What is the probability
that any of all the particles collide ?

To understand this, let’s define N∗(t) as the number of gas molecules that
do not have yet had a collision. Then we can write

N∗(t+ dt) = N∗(t)−N∗(t)dt
τ

(124)

What is this equation? This equation is very simple. It just means that the
particles that do not have hit anything at t+ dt, is given by the initial particles
at t, N∗(t), minus the total collisions occurred in the time dt. The total number
of hits during this small interval dt is of course the current number of molecules
-again N∗(t)- multiplied the probability dt/τ , so we obtain the above eq. 124.
If we manipulate eq. 124 we easily obtain

N∗(t+ dt)−N∗(t)
dt

= −N
∗(t)

τ
(125)

if dt→ 0 this becomes

dN∗(t)

dt
= −N

∗(t)

τ
dN∗(t)

N∗(t)
= −dt

τ
(126)
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and if we integrate we finally have this equation:

N∗(t) = N∗(0)e−t/τ (127)

This means that the number of particles N∗ that do not experience any colli-
sion, diminish in time with the equation 127 above. We can also say that the
probability of no collision is e−t/τ and that the probability of collision is then

P (t) ∝ 1− e−t/τ (128)

This is the collective probability of collision, the probability that any of all the
particles collide. If the time t tends to infinite, this probability of course tends
to one. We can call the average time of collision τ relaxation time because it
somehow represents -on average- how much time the particle can run without
any collision.

Now, we know that our gas particles move with a certain speed. Every
particles has its own speed, and at each collision the speed change. However,
we know that -on average- the speed is given by 1

2mv
2 = 1

2kT ! If this is true
we can define another important parameter

λ = τv (129)

this λ is called usually mean free path. It is the average length that the particle
can run free. This parameter is as important as τ and has almost the same
meaning. The mean distance the gas particle can go -on average- before it
experiences a collision.

Now let’s try to relate some gas parameters that we know. Let’s ask our-
selves, what is the probability of collision after the particle has moved a distance
dx ? Similarly to what we already did when we were considering the relaxation
time, we know the answer; this probability (for only one particle) is:

dx

λ
(130)

Now, lets consider it from another point of view. If we have a box of volume dV ,
with particle density n, what is the probability of collision in a small section
of it of length dx ? Well, as we know the number of particles in this section is
nAdx, where A is the area of this section (see figure 15).

If every single particle has an average area σ, then the total area occupied by
the particle is σnAdx. If we divide this area with the total area available (which
of course is A), the we obtain the probability of collision within this section of
length dx: σndx. But this value must be equal to eq. 130, so finally we have:

dx

λ
= σndx (131)

simplifying this yields this very important relation:

nσλ = 1 (132)
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Figure 15: A scheme for the modelling of the collision probability. The cross
section is represented by the average area of a single gas molecule.

this equation is very important because it relate the particle density n, their
cross section σ and their mean free path λ in a gas system each other with a
very simple and compact formula. These parameters are statistical molecular
parameters.

14.1 The drift velocity

Now suppose we have some particles in the middle of other particles of another
kind. They can be gas particles in the middle of other heavier molecules. Or
they can be electrons in a metal, in the middle of the atomic ions. Suppose these
particles are subject to a force, let’s call it F . Let’s suppose that this force will
push the particles in one specific direction, but they will not influence the other
kind of particles. As we know, for a small interval of time, the particles will
accelerate freely under the force F . Then there will be a collision, maybe with
the other kind of particles. Now, during the free time they are solely subject to
the force F , they will accelerate. How much ? Of course the acceleration will
be

ap =
F

m
(133)

where m is the mass of the particle.
After how much time there is a collision? We do not know exactly. However,

we already defined the average time between collisions. We called this time
relaxation time and used the symbol τ . If we suppose that after every collisions
our speed is reset and we have to start again, then we can calculate how much
is the average speed that the particles move. Of course it is the average speed
the particles have, multiplied the average time they move freely in space. It is
an average, collective speed, and usually is called drift speed:

vdrift = apτ =
Fτ

m
(134)
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Figure 16: A scheme describing the drift process. Smaller particles in move-
ment under a force F collide against heavier ones supposed fixed. The average
relaxation time is τ and the average mean free time is λ. If these parameter are
true on average, it results equation 134.

In general the velocity of drift is expressed under the following form:

vdrift = µF (135)

The parameter µ is very important, called mobility and it is expressed as

µ =
τ

m
(136)

We have to remember that drift velocity for a system particles can be defined
only between some kind of particles against some other. We cannot define drift
if we have only one species of particles in our box (!)

15 Electric Resistance

Let’s now apply what we know to a conduction problem. Let’s suppose we have
a mixture of gas between two electrodes, like in figure 17. The drifting particles
are moving under a force. The other particles can be neutral atoms that do not
move and oppose the drifting process. The two electrodes are under a potential
V . As we know from physics this will correspond to a electric field of value
E = V/d, where d is the separation of the two electrodes. What is the force
acting on these ions ? If the charge of the ion is q, from basic physics we know
it is F = qE. So using eq (135) we have:

vdrift = µF = µqE = µq
V

d
(137)

Now let’s make another physical model of the charge movement in the gas.
We suppose -as we did many times- that the density of drifting particles is known
and its value is ni, we give the index i because in this case the moving particles
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Figure 17: A scheme describing the conduction process. The bigger particles are
those which are fixed and oppose the drift process, neutral atoms for example.
The smeller particles represent the drifting ions.

are ions. What is the electric current at the electrodes? Current is defined in
physics as the number of charges arriving at the electrode in a time t per unity
of area A. We ask ourselves: how many ions are arriving at the electrode, if
the velocity is vdrift ? In a time t the particles move on average for a distance
vdriftt. If we multiply this small distance for the area of the electrodes Ae we
have the volume containing all the ions that will reach the electrode within the
time t. This volume multiplied by the density ni will result in the total number
Ne of ions reaching the electrode in a time t.

Ne = niAevdriftt (138)

Now let’s come back to our question: what is the electric current at the elec-
trodes ? Well, the current is the number of charges per second per unity of area.
So if multiply by the charge of every single ion q and divide by the unity of area
and by the time t, we have what we want:

I = qniAevdrift (139)

Now if we substitute the value of vdrift we have:

I =
µq2niAe

d
V (140)

Please remember that to divide by the unity of area is like to divide by one,
as long as the other area (Ae, the area of the electrodes) is expressed in that
unit. Now using the Ohm law V = RI, we immediately find the expression of
Resistance R for an ionized gas under an electric field

R =
d

µq2niAe
(141)

Also, if we remember from any textbook the general expression of the resistance
as R = ρl/S where l is the distance of the electrodes, S their area and ρ is the
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so call resistivity, then we can also find an expression of the resistivity in terms
of molecular parameters:

ρ =
1

µq2ni
(142)

15.1 Diffusion

What is the difference between drift and diffusion ? First of all we have to define
diffusion. You remember the definition of current ? We have an electric current
if a certain amount of electric charges passes a unity of area in a certain time.
Now, we can define another current, we call it molecular current, it is defined
by the number of molecules that flow in a unity of area per unity of time, very
similar to the definition of electric current. If we know the density of molecules
na, we can easily calculate the total number of molecules in the time t, as we
did usually:

Ntot = na ∗ dV = naAvxt (143)

with dV representing the small volume of particles moving in the time t, A the
section area we are considering and vx the average velocity of the molecules in
the direction x. So we can write tentatively that the molecular current is

J = navx (144)

This could be true if there is a force pushing the molecules around. But we do
not have this force in this case, otherwise we would be speaking about drift.
We want to speak about diffusion, a natural movement of particles that do not
require an external force.

So we need to have a reason for the molecules to move around, without any
force. This reason is the difference in concentration ! So we have as usual to
think small. Let’s imagine that there are two concentrations, n− and n+. These
are the concentration of the molecules one on the left and right of an imaginary
x axis before the molecules begin to move. The distance of these two very near
particles is of course the free mean path, a very small distance!

In this situation we have two concentration, n+ and n− representing the
concentration of molecules near the imaginary separation axis x. Let’s consider
the difference (the differential) between these two concentrations dna = (n+ −
n−). We can define Jx = dnavx, and for easy mathematical reason

dna =
dna
dx

∆x =
dna
dx

λ (145)

where λ is the free mean path. Why we chose λ as dx? Because we are thinking
small so we suppose a tiny variation of particle density dna. So our current is

Jx = −λvx
dna
dx

(146)

this is valid in general for every other xyz direction. We remember that λ = vxτ
and τ = µm then:

Jx = −v2
xµm

dna
dx

(147)
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Figure 18: A scheme describing the diffusion process of two different species at
different concentration. Note that there is not an external force F in this case(!)

Let’s recall the fundamental equation 1
2mv

2
x = 1

2kT and we have

Jx = −µkT dna
dx

(148)

In conclusion, if we define the diffusion coefficient D as

Jx = −Ddna
dx

(149)

we have D = µkT .
Now what will happen if we have a combination of drift and diffusion ? In

this case the drift velocity should compensate the diffusion, so Jx = −navdrift
(the minus appears because the two velocities are in the opposite direction).

Knowing that vdrift = µF , we substitute on the above eq. 149 and we have

D
dna
dx

= naµF (150)

and because D = µkT we have finally

dna
dx

=
naF

kT
(151)

which is a very important relation that was firstly found by A. Einstein. This
relation shows that when we have an external force F , the combined effect
of diffusion and drift provoke a gradient of concentration equal to naF/kT as
in the equation 151. This is valid -of course- only at the equilibrium. There
is something very important related to equation 151. Let’s see there are two
variables, na the particles concentration and x the spacial variable. Let’s put
these variables together:

dna
na

=
Fdx

kT
(152)
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Interestingly, Fdx is the work done on the molecules. Now we can integrate the
two sides: ∫

dna
na

=
1

kT

∫
Fdx (153)

We remember from basic physics that F = −dU/dx which means U = −
∫
Fdx,

so:

ln
n

n0
=

1

−kT
U (154)

Let’s forget the index a in the gas-concentration parameter n, so for simplicity
for now on n = na, applying the exponential function left and right, we have:

n

n0
= e−

U
kT (155)

because U is the potential energy we can write finally this surprising equation:

n = n0e
− U
kT (156)

What’s so exiting now about this equation ? It is exiting the fact that we
already know it ! It is exactly equation 85, the equation for ideal gas we found
many sections above. . . ! This is very exiting ! Why..? Because all our modelling
where somehow approximate. We used many simplifications and assumption,
however using this approach we reached equation 151 studying the effect of
diffusion and drift on particles and we discovered that this equation contains
in itself the ideal gas relations we started from. This means all our reasoning
make sense and that there are no contradictions in the treatment.
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16 Black Body radiation

Suppose we want to study the radiation emission of a hot body. In a hot body,
all the molecules vibrates. We can approximate these vibrations as elastic oscil-
lations of a charged particle. We do not derive here the detail of the calculations,
however you can imagine that the energy of the emission is of course stronger
at higher temperatures (Ek = 1

2kT !). If the energy is proportional to kT , what
is the relation of Energy and the frequency of vibration ω ? If we consider the
simplest oscillator (the harmonic oscillator), we can write that the energy is

W =
1

2
mω2x2

o

The detailed calculation is complex and we skip it here, however you should
not be surprised if we find in the final relation for the intensity I(ω) a direct
dependence with ω2 and the molecules kinetic energy: kT ,

I(ω) =
ω2 < Ek >

π2c2
=
ω2kT

π2c2
(157)

this equation is called the Rayleigh’s law for the black body radiation. Interest-
ingly enough, this equation fits very well the experimental data for low energies,
however, it fail completely to predict a diminished emission at higher energies.
Accordingly to eq. 157, because of the ω2, we should observe a lot of X-Ray
and other unhealthy emission from a hot body, much more UV and X-rays than
other radiation! Instead, of course, in the experiments, we never observe emis-
sion over UV or X-rays, even if we heat-up a body at very high temperatures !
Even if it looks correct, there is something completely wrong in this equation,
what is going on here ?!? Many researchers at that time studied the problem,
and nobody was able to find an answer. The problem was called by physicists
of the time the UV catastrophe. Max Planck also studied the problem and was
getting mad at it. Until one day that he made the very fancy hypothesis that
the kinetic energy cannot be a continuous value, but must be quantized in mul-
tiple steps of hω. In this way he calculated the average energy that is not any
more kT as in the equation 157, but a different value that drops down very fast
at higher frequencies. This supposition that Energy cannot be continuous, was
defined by Planck and his colleagues as an act of desperations ! How it was done
?

Planck thought that for some reason, the oscillation of electrons must be
quantized, exactly as the strings of a guitar are forced to vibrate only to multiple
frequencies. This idea was not unfamiliar to physicists, in fact standing waves in
musical instruments behave exactly this way: frequency is quantized in multiples
of a base tone (see fig. ??)

Planck thought then that the vibration of the molecules in a hot body, must
behave exactly this way. So he simply calculated the average energy of such
systems. The average energy is : < E >= Etot

Ntot
where Etot is the total energy

of the system, and Ntot is the total number of available states.
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Let’s calculate first Ntot: lets choose one frequency ω. For this single ω, if we
have many possible levels of energies E0, E1, E2 etcetera, we will have N0, N1,
N2 molecules on each of these energy levels, right? The problem now is: ”what
will be the distribution of these energies?”, in other words, how many molecules
will be in N0, N1, N2 etcetera? Of course, Planck wanted to be simple and he
thought at the well known Boltzmann distribution that we know very well. So
he said, the number of molecules in each energy states E0, E1, E2 . . ., will be
distributed as a Boltzmann distribution, so like this :

N0

N1 = N0e
−hω/kT

N2 = N0e
−2hω/kT

N3 = N0e
−3hω/kT (158)

. . .

where h is a constant. If we have an infinite number of these states, what is the
total Ntot that we are looking for ? Well, let’s simplify the equation by calling
x = e−hω/kT , then our eq. 159 becomes:

N0

N1 = N0x

N2 = N0x
2

N3 = N0x
3 (159)

. . .

and so on. Then the total Ntot is

Ntot = N0(1 + x+ x2 + x3 + . . .)

For the theory of series it is very easy to demonstrate (simply multiply the series
by x and compare it with itself) that

Ntot = N0
1

1− x
(160)

At this point we only need to calculate the total energy of the system. Planck
simply added up the energy for each level. The total Energy at the lowest ground
level was for simplicity set to zero, the total energy at the fist level was N1 ∗E1,
for the second N2 ∗ E2 and so on... since Planck assumed that energy proceed
in multiple of a base (ground) value E0 = hω, then E1 = 2hω, E3 = 3hω. If we
proceed this way, using again x = e−hω/kT the total energy is then

Etot = hω(x+ 2x2 + 3x3 + . . .) (161)

Again, if this series is infinite, the theory says that (again multiply the series
by x and compare it with itself)

Etot = hω
x

(1− x)2
(162)
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so the average system energy that we are looking for is:

< Ek >=
Etot
Ntot

= hω
x

1− x
(163)

or substituting back x

< Ek >=
hω

ehω/kT − 1
(164)

(note that the exponent of the exponential now is positive and not negative as
usual!). This formula is what we have to substitute to < Ek >= kT in eq. 157,
it goes down very fast for higher frequency. We obtain a curve that fits perfectly
experimental data:

I(ω) =
ω2 < Ek >

π2c2
=

hω3

π2c2(ehω/kT − 1)
(165)

This equation grows initially with ω as before, but at higher frequencies the
exponential wins and everything goes to zero as it should be, the UV catas-
trophe was finally solved! This was the first quantum equation ever, it became
very famous as the Planck radiation law, or Planck’s blackbody equation. The
problem of the ultraviolet emission of hot body of equation 157 was solved for
ever and quantum mechanics was born.
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