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Quantum Behavior .

1-1 Atomic mechanics

“Quantum mechanics” is the description of the behavior of matter and light
in all its details and, in particular, of the happenings on an atomic scale. Things
on a very small scale behave like nothing that you have any direct experience
about. They do not behave like waves, they do not behave like particles, they do
not behave like clouds, or billiard balls, or weights on springs, or like anything
that you have ever seen.

Newton thought that light was made up of particles, but then it was discovered
that it behaves like a wave. Later, however (in the beginning of the twentieth
century), it was found that light did indeed sometimes behave like a particle.
Historically, the electron, for example, was thought to behave like a particle, and
then it was found that in many respects it behaved like a wave. So it really behaves
like neither. Now we have given up. We say: “It is like neither.” s

There is one lucky break, however—electrons behave just like light. The
quantum behavior of atomic objects (electrons, protons, neutrons, photons, and
so on) is the same for all, they are all “particle waves,” or whatever you want to
call them. So what we learn about the properties of electrons (which we shall use
for our examples) will apply also to all “particles,” including photons of light.

The gradual accumulation of information about atomic and small-scale be-
havior during the first quarter of this century, which gave some indications about
how small things do behave, produced an increasing confusion which was finally
resolved in 1926 and 1927 by Schrédinger, Heisenberg, and Born. They finally
obtained a consistent description of the behavior of matter on a small scale. We
take up the main features of that description in this chapter.

""Because atomic behavior is so unlike ordinary experience, it is very difficult

to get used to, and it appears peculiar and mysterious to everyone—both to the

~ novice and to the experienced physicist. Even the experts do not understand it

the way they would like to, and it is perfectly reasonable that they should not,

because all of direct, human experience and of human intuition applies to large

objects. We know how large objects will act, but things on a small scale just do

not act that way. So we have to learn about them in a sort of abstract or imagi-
native fashion and not by connection with our direct experience.

In this chapter we shall tackle immediately the basic element of the mysterious
behavior in its most strange form. We choose to examine a phenomenon which is
impossible, absolutely impossible, to explain in any classical way, and which has
in it the heart of quantum mechanics. In reality, it contains the only mystery.
We cannot make the mystery go away by “explaining” how it works. We will just
tell you how it works. In telling you how it works we will have told you about the
basic peculiarities of all quantum mechanics.

1-2 An experiment with bullets

To try to understand the quantum behavior of electrons, we shall compare
and contrast their behavior, in a particular experimental setup, with the more
familiar behavior of particles like bullets, and with the behavior of waves like
water waves. We consider first the behavior of bullets in the experimental setup
shown diagrammatically in Fig. 1-1. We have a machine gun that shoots a stream
of bullets. Itis not a very good gun, in that it sprays the bullets (randomly) over a
fairly large angular spread, as indicated in the ﬁgure., In front of the gun we have
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Fig. 1-1. Interference experiment
with bullets.

a wall (made of armor plate) that has in it two holes just about big enough to let a
bullet through. Beyond the wall is a backstop (say a thick wall of wood) which will
“absorb” the bullets when they hit it. In front of the wall we have an object which
we shall call a “detector” of bullets. It might be a box containing sand. Any bullet
that enters the detector will be stopped and accumulated. When we wish, we can
empty the box and count the number of bullets that have been caught. The
detector can be moved back and forth (in what we will call the x-direction). With
this apparatus, we can find out experimentally the answer to the question: “What
is the probability that a bullet which passes through the holes in the wall will
arrive at the backstop at the distance x from the center?” First, you should
realize that we should talk about probability, because we cannot say definitely
where any particular bullet will go. A bullet which happens to hit one of the holes
may bounce off the edges of the hole, and may end up anywhere at all. By “prob-
ability” we mean the chance that the bullet will arrive at the detector, which we can
measure by counting the number which arrive at the detector in a certain time and
then taking the ratio of this number to the total number that hit the backstop during
that time. Or, if we assume that the gun always shoots at the same rate during the
measurements, the probability we want is just proportional to the number that
reach the detector in some standard time interval.
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For our present purposes we would like to imagine a somewhat idealized
experiment in which the bullets are not real bullets, but are indestructible bullets—
they cannot break in half. In our experiment we find that bullets always arrive in
lumps, and when we find something in the detector, it is always one whole bullet.
If the rate at which the machine gun fires is made very low, we find that at any given
moment either nothing arrives, or one and only one—exactly one—bullet arrives
at the backstop. Also, the size of the lump certainly does not depend on the rate
of firing of the gun. We shall say: “Bullets always arrive in identical lumps.” What
we measure with our detector is the probability of arrival of a lump. And we meas-
ure the probability as a function of x. The result of such measurements with this
apparatus (we have not yet done the experiment, so we are really imagining the
result) are plotted in the graph drawn in part (c) of Fig. 1-1. In the graph we plot
the probability to the right and x vertically, so that the x-scale fits the diagram of
the apparatus. We call the probability P,, because the bullets may have come
either through hole 1 or through hole 2. You will not be surprised that P, is
large near the middle of the graph but gets small if x is very large. You may
wonder, however, why P, , has its maximum value at x = 0. We can understand
this fact if we do our experiment again after covering up hole 2, and once more
while covering up hole 1. When hole 2 is covered, bullets can pass only through
hole 1, and we get the curve marked P, in part (b) of the figure. As you would
expect, the maximum of P; occurs at the value of x which is on a straight line with
the gun and hole 1. When hole 1 is closed, we get the symmetric curve P, drawn
in the figure. P, is the probability distribution for bullets that pass through hole
2. Comparing parts (b) and (c) of Fig. 1-1, we find the important result that

Py3 = Py + P, (1.1)
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The probabilities just add together. The effect witk
the effects with each hole open alone. We shall ca
“no interference,” for a reason that you will see lat

come in lumps, and their probability of arrival shows o InterTerence.”

1-3 An experiment with waves

Now we wish to consider an experiment with water waves. The apparatus is
shown diagrammatically in Fig. 1-2. We have a shallow trough'of water. A small
object labeled the “wave source” is jiggled up and down by a motor and makes
circular waves. To the right of the source we have again a wall with two holes,
and beyond that is a second wall, which, to keep things simple, is an “absorber,”
so that there is no réflection of the waves that arrive there. This can be done by
building a gradual sand “beach.” In front of the beach we place a detector which
can be moved back and forth in the x-direction, as before. The detector is now a
device which measures the “intensity” of the wave motion. You can imagine a
gadget which measures the height of the wave motion, but whose scale is calibrated
in proportion to the square of the actual height, so that the reading is proportional
to the intensity of the wave. Our detector reads, then, in proportion to the energy
being carried by the wave—or rather, the rate at which energy is carried to the
detector.
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With our wave apparatus, the first thing to notice is that the intensity can
“have any size. If the souree just moves a very small amount, then there is just a
little bit of wave motion at the detector. When there is more motion at the source,
there is more intensity at the detector. The intensity of the wave can have any
value at all. We would not say that there was any “lumpiness” in the wave intensity.
Now let us measure the wave intensity for various values of x (keeping the
wave source operating always in the same way). We get the interesting-looking
curve marked /;5 in part (c) of the figure.

We have already worked out how such patterns can come about when we
studied the interference of electric waves in Volume I. In this case we would
observe that the original wave is diffracted at the holes, and new circular waves
spread out from each hole. If we cover one hole at a time and measure the intensity
distribution at the absorber we find the rather simple intensity curves shown in part
(b) of the figure. I, is the intensity of the wave from hole 1 (which we find by
measuring when hole 2 is blocked off) and I, is the intensity of the wave from hole
2 (seen when hole 1 is blocked).

The intensity 7, ; observed when both holes are open is certainly not the sum
of I; and 7,. We say that there is “interference” of the two waves. At some places
(where the curve I, , has its maxima) the waves are “in phase” and the wave
peaks add together to give a large amplitude and, therefore, a large intensity. We
say that the two waves are “interfering constructively” at such places. There will
be such constructive interference wherever the distance from the detector to one
hole is a whole number of wavelengths larger (or shorter) than the distance from
the detector to the other hole.
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Fig. 1-3.
with electrons.

Interference

experiment

At those places where the two waves arrive at the detector with a phase differ-
ence of = (where they are “out of phase”) the resulting wave motion at the detector
will be the difference of the two amplitudes. The waves “interfere destructively,”
and we get a low value for the wave intensity. We expect such low values wherever
the distance between hole 1 and the detector is different from the distance between
hole 2 and the detector by an odd number of half-wavelengths. The low values of
I15in Fig. 1-2 correspond to the places where the two waves interfere destructively.

You will remember that thé quantitative relationship between I, J 2, and Iy,
can be expressed in the following way: The instantaneous height of the water wave
at the detector for the wave from hole 1 can be written as (the real part of) &;e'™?,
where the “amplitude” 4, is, in general, a complex number. The intensity is
proportional to the mean squared height or, when we use the complex numbers,
to the absolute value squared |, |2. Similarly, for hole 2 the height is /456t and the
intensity is proportional to |52, When both holes are open, the wave heights
add to give the height(k; + hs)e™* and the intensity |k, + hy|%. Omitting the
constant of proportionality for our present purposes, the proper relations for
interfering waves are

11 = lhllz, 12 == I/‘lzlz, 112 = lhl + h2|2. (1.2)

You will notice that the result is quite different from that obtained with bullets

(Eq. 1-1). If we expand |; + h|? we see that

lhy + hsl® = |hy|? + |hg|? + 2|hy||hy| cos 5, (1.3)

where 4 is the phase difference between hy and hy. In terms of the intensities, we
could write

I = Iy + Iy + 2+/T11, cos 6. (1.4

The last term in (1.4) is the “interference term.” So much for water waves. The
intensity can have any value, and it shows interference.

1-4 An experiment with electrons

Now we imagine a similar experiment with electrons. It is shown diagram-
matically in Fig. 1-3. We make an electron gun which consists of a tungsten wire
heated by an electric current and surrounded by a metal box with a hole in it. If
the wire is at a negative voltage with respect to the box, electrons emitted by the
wire will be accelerated toward the walls and some will pass through the hole.
All the electrons which come out of the gun will have (nearly) the same energy.
In front of the gun is again a wall (just a thin metal plate) with two holes in it.
Beyond the wall is another plate which will serve as a “backstop.” In front of the
backstop we place a movable detector. The detector might be a geiger counter or,
perhaps better, an electron multiplier, which is connected to a loudspeaker.

We should say right away that you should not try to set up this experiment
(as you could have done with the two we have already described). This experiment
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has never been done in just this way. The trouble is that the apparatus would have
to be made on an impossibly small scale to show the effects we are interested in.
We are doing a ‘“‘thought experiment,” which we have chosen because it is easy to
think about. We know the results that would be obtained because there are many
experiments that have been done, in which the scale and the proportions have
been chosen to show the effects we shall describe.

The first thing we notice with our electron experiment is that we hear sharp
“clicks” from the detector (that is, from the loudspeaker). And all “clicks” are
the same. There are no “half-clicks.”

We would also notice that the “clicks” come very erratically. Something like:
click’. s click-click:. :iielick .i . s s click . ... click-click...... click .
etc., just as you have, no doubt, heard a geiger counter operating. If we count
the clicks which arrive in a sufficiently long time—say for many minutes—and
then count again for another equal period, we find that the two numbers are very
nearly the same. So we can speak of the average rate at which the clicks are heard
(so-and-so-many clicks per minute on the average).

As we move the detector around, the raze at which the clicks appear is faster
or slower, but the size (loudness) of each click is always the same. If we lower the
temperature of the wire in the gun, the rate of clicking slows down, but still each
click sounds the same. We would notice also that if we put two separate detectors
at the backstop, one or the other would click, but never both at once. (Except that
once in a while, if there were two clicks very close together in time, our ear might
not sense the separation.) We conclude, therefore, that whatever arrives at the
backstop arrives in “lumps.” All the “lumps” are the same size: only whole
“lumps” arrive, and they arrive one at a time at the backstop. We shall say:
“Electrons always arrive in identical lumps.”

Just as for our experiment with bullets, we can now proceed to find experi-
mentally the answer to the question: “What is the relative probability that an
electron ‘lump’ will arrive at the backstop at various distances x from the center ?*’
As before, we obtain the relative probability by observing the rate of clicks, holding
the operation of the gun constant. The probability that lumps will arrive at a
particular x is proportional to the average rate of clicks at that x.

The result of our experiment is the interesting curve marked P, in part (c)
of Fig. 1-3. Yes! That is the way electrons go. »

”.1—5 The interference of electron waves

Now let us try to analyze the curve of Fig. 1-3 to see whether we can under-
stand the behavior of the electrons. The first thing we would say is that since they
come in lumps, each lump, which we may as well call an electron, has come either
through hole 1 or through hole 2. Let us write this in the form of a “Proposition”:

Proposition A: Each electron either goes through hole 1 or it goes through
hole 2.

Assuming Propositon A, all electrons that arrive at the backstop can be di-
vided into two classes: (1) those that come through hole 1, and (2) those that come
through hole 2. So our observed curve must be the sum of the effects of the elec-
trons which come through hole 1 and the electrons which come through hole 2.
Let us check this idea by experiment. First, we will make a measurement for those
electrons that come through hole 1. We block off hole 2 and make our counts of
the clicks from the detector. From the clicking rate, we get P;. The result of the
measurement is shown by the curve marked P, in part (b) of Fig. 1-3. The result
seems quite reasonable. In a similar way, we measure P, the probability distribu-
tion for the electrons that come through hole 2. The result of this measurement
is also drawn in the figure.

The result P, 5 obtained with both holes open is clearly not the sum of P, and
P, the probabilities for each hole alone. In analogy with our water-wave experi-
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ment, we say: “There is interference.”
For electrons: Py, # Py + Po. (1.5)

How can such an interference come about? Perhaps we should say: “Well,
that means, presumably, that it is not true that the lumps go either through hole
1 or hole 2, because if they did, the probabilities should add. Perhaps they go in a
more complicated way. They split in half and ...” But no! They cannot, they
always arrive in lumps . .. “Well, perhaps some of them go through 1, and then
they go around through 2, and then around a few more times, or by some other
complicated path . . . then by closing hole 2, we changed the chance that an elec-
tron that started out through hole 1 would finally get to the backstop . ..” But,
notice! There are some points at which very few electrons arrive when both holes
are open, but which receive many electrons if we close one hole, so closing one
hole increased the number from the other. Notice, however, that at the center
of the pattern, P, is more than twice as large as Py + P,. It is as though closing
one hole decreased the number of electrons which come through the other hole..
It seems hard to explain both effects by proposing that the electrons travel in
complicated paths. -

It is all quite mysterious. And the more you look at it the more mysterious
it seems. Many ideas have been concocted to try to explain the curve for Py, in
terms of individual electrons going around in complicated ways through the holes.
None of them has succeeded. None of them can get the right curve for Py, in
terms of P; and P,.

Yet, surprisingly enough, the mathematics for relating P, and P; to Pyj is
extremely simple. For P, is just like the curve I;, of Fig. 1-2, and that was
simple. What is going on at the backstop can be described by two complex numbers
that we can call ¢; and ¢ (they are functions of x, of course). The absolute square
of ¢, gives the effect with only hole 1 open. Thatis, P; = |$1]2. The effect with
only hole 2 open is given by ¢, in the same way. That is, P2 = |¢2|%. And the
combined effect of the two holes is just Py, = |¢3 + ¢2|%. The mathematics
is the same as that we had for the water waves! (It is hard to see how one could
get such a simple result from a complicated game of electrons going back and forth
through the plate on some strange trajectory.)

We conclude the following: The electrons arrive in lumps, like particles, and
the probability of arrival of these lumps is distributed like the distribution of
intensity of a wave. It is in this sense that an electron behaves ‘“‘sometimes like a
particle and sometimes like a wave.”

Incidentally, when we were dealing with classical waves we defined the in-
tensity as the mean over time of the square of the wave amplitude, and we used
complex numbers as a mathematical trick to simplify the analysis. But in quantum
mechanics it turns out that the amplitudes must be represented by complex num-
bers. The real parts alone will not do. That is a technical point, for the moment,
because the formulas look just the same.

Since the probability of arrival through both holes is given so simply, although
it is not equal to (P; + Pj), that is really all there is to say. But there are a large
number of subtleties involved in the fact that nature does work this way. We
would like to illustrate some of these subtleties for you now. First, since the num-
ber that arrives at a particular point is not equal to the number that arrives through
1 plus the number that arrives through 2, as we would have concluded from
Proposition A, undoubtedly we should conclude that Proposition A is false. 1t is
not true that the electrons go either through hole 1 or hole 2. But that conclusion
can be tested by another experiment.

1-6. Watching the electrons

We shall now try the following experiment. To our electron apparatus we
add a very strong light source, placed behind the wall and between the two holes,
as shown in Fig. 1-4. We know that electric charges scatter light. So when an
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electron passes, however it does pass, on its way to the detector, it will scatter some
light to our eye, and we can see where the electron goes. If, for instance, an electron
were to take the path via hole 2 that is sketched in Fig. 1-4, we should see a flash
of light coming from the vicinity of the place marked A in the figure. If an electron
passes through hole 1, we would expect to see a flash from the vicinity of the upper
hole. If it should happen that we get light from both places at the same time,
because the electron divides in half ... Let us just do the experiment!

Here is what we see: every time that we hear a “click” from our electron de-
tector (at the backstop), we also see a flash of light either near hole 1 or near hole
2, but never both at once! And we observe the same result no matter where we put
the detector. From this observation we conclude that when we look at the electrons
we find that the electrons go either through one hole or the other. Experimentally,
Proposition A is necessarily true.

What, then, is wrong with our argument against Proposition A? Why isn’t
Pyjjustequal to P, + P,? Back to experiment! Let us keep track of the electrons
and find out what they are doing. For each position (x-location) of the detector
we will count the electrons that arrive and also keep track of which hole they went
through, by watching for the flashes. We can keep track of things this way:
whenever we hear a ““click” we will put a count in Column 1 if we see the flash near
hole 1, and if we see the flash near hole 2, we will record a count in Column 2.
Every electron which arrives is recorded in one of two classes: those which come
through 1 and those which come through 2. From the number recorded in Column
1 we get the probability P; that an electron will arrive at the detector via hole 1;
and from the number recorded in Column 2 we get Pj, the probability that an
electron will arrive at the detector via hole 2. If we now repeat such a measurement
for many values of x, we get the curves for P] and P} shown in part (b) of Fig. 1-4.

Well, that is not too surprising! We get for P; something quite similar to
what we got before for Py by blocking off hole 2; and P} is similar to what we got
by blocking hole 1. So there is not any complicated business like going through
both holes. When we watch them, the electrons come through just as we would
expect them to come through. Whether the holes are closed or open, those which
we see come through hole 1 are distributed in the same way whether hole 2 is open
or closed.

But wait! What do we have now forthe zozal probability, the probability that
an electron will arrive at the detector by any route? We already have that informa-
tion. We just pretend that we never looked at the light flashes, and we lump to-
gether the detector clicks which we have separated into the two columns. We
must just add the numbers. For the probability that an electron will arrive at the
backstop by passing through either hole, we do find P}, = P, + P,. That is,
although we succeeded in watching which hole our electrons come through, we
no longer get the old interference curve P,,, but a new one, P{,, showing no
interference! If we turn out the light Py, is restored.

We must conclude that when we look at the electrons the distribution of them
on the screen is different than when we do not look. Perhaps it is turning on our
light source that disturbs things? It must be that the electrons are very delicate,
and the light, when it scatters off the electrons, gives them a jolt that changes their
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motion. We know that the electric field of the light acting on a charge will exert
a force on it. So perhaps we should expect the motion to be changed. Anyway,
the light exerts a big influence on the electrons. By trying to “watch” the electrons
we have changed their motions. That is, the jolt given to the electron when the
photon is scattered by it is such as to change the electron’s motion enough so that
if it might have gone to where Py, was at a maximum it will instead land where
P, was a minimum; that is why we no longer see the wavy interference effects.

You may be thinking: “Don’t use such a bright source! Turn the brightness
down! The light waves will then be weaker and will not disturb the electrons so
much. Surely, by making the light dimmer and dimmer, eventually the wave
will be weak enough that it will have a negligible effect.” O.K. Let’s try it. The
first thing we observe is that the flashes of light scattered from the electrons as
they pass by does not get weaker. It is always the same-sized flash. The only thing
that happens as the light is made dimmer is that sometimes we hear a ‘“click”
from the detector but see no flash at all. The electron has gone by without being
‘“seen.” What we are observing is that light also acts like electrons, we knew that
it was “wavy,” but now we find that it is also “lumpy.” It always arrives—or is
scattered—in Iumps that we call “photons.” As we turn down the intensity of
the light source we do not change the size of the photons, only the rate at which
they are emitted. That explains why, when our source is dim, some electrons get
by without being seen. There did not happen to be a photon around at the time
the electron went through.

This is all a little discouraging. If it is true that whenever we “see” the electron
we see the same-sized flash, then those electrons we see are always the disturbed
ones. Let us try the experiment with a dim light anyway. Now whenever we hear
a click in the detector we will keep a count in three columns: in Column (1) those
electrons seen by hole 1, in Column (2) those electrons seen by hoyc 2, and in
Column (3) those electrons not seen at all. When we work up our datal(computing
the probabilities) we find these results: Those “seen by hole 1’ have a distribution
like P1; those “seen by hole 2” have a distribution like P} (so that those “‘seen by
either hole 1 or 2 have a distribution like P{3); and those “not seen at all”” have a
“wavy” distribution just like Py, of Fig. 1-3! If the electrons are not seen, we
have interference!

That is understandable. When we do not see the electron, no photon disturbs
it, and when we do see it, a photon has disturbed it. There is always the same
amount of disturbance because the light photons all produce the same-sized effects
and the effect of the photons being scattered is enough to smear out any inter-
ference effect.

Is there not some way we can see the electrons without disturbing them?
We learned in an earlier chapter that the momentum carried by a “photon”
is inversely proportional to its wavelength (p = h/)). Certainly the jolt given
to the electron when the photon is scattered toward our eye depends on the
momentum that photon carries. Aha! If we want to disturb the electrons only
slightly we should not have lowered the intensity of the light, we should have
lowered its frequency (the same as increasing its wavelength). Let us use light of
a redder color. We could even use infrared light, or radiowaves (like radar), and
“see” where the electron went with the help of some equipment that can ‘“‘see”
light of these longer wavelengths. If we use “gentler” light perhaps we can avoid
disturbing the electrons so much.

Let us try the experiment with longer waves. We shall keep repeating our ex-
periment, each time with light of a longer wavelength. At first, nothing seems to
change. The results are the same. Then a terrible thing happens. You remember
that when we discussed the microscope we pointed out that, due to the wave nature
of the light, there.is a limitation on how closetwo spots can be and still be seen
as two separate spots. This distance is. of the order of the wavelength of light. So
now, when we make the wavelength longer than the distance between our holes,
we see a big fuzzy flash when the light is scattered by the electrons. We can no
longer tell which hole the electron went through! We just know it went somewhere!
And it is just with light of this color that we find that the jolts given to the electron
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are small enough so that P}, begins to look like P, ,—that we begin to get some
interference effect. And it is only for wavelengths much longer than the separation
of the two holes (when we have no chance at all of telling where the electron went)
that the disturbance due to the light gets sufficiently small that we again get the
curve Py, shown in Fig. 1-3.

In our experiment we find that it is impossible to arrange the light in such a
way that one can tell which hole the electron went through, and at the same time
not disturb the pattern. It was suggested by Heisenberg that the then new laws of
nature could only be consistent if there were some basic limitation on our experi-
mental capabilities not previously recognized. He proposed, as a general principle,
his wncertainty principle, which we can state in terms of our experiment ac follows:
“Tt is impossible to design an apparatus to determine which hole the electron passes
through, that will not at the same time disturb the electrons enough to destroy the
interference pattern.” If an apparatus is capable of determining which hole the
electron goes through, it cannot be so delicate that it does not disturb the pattern in
an essential way. No one has ever found (or even thought of) a way around the
uncertainty principle. So we must assume that it describes a basic characteristic
of nature.

The complete theory of quantum mechanics which we now use to describe
atoms and, in fact, all matter, depends on the correctness of the uncertainty prin-
ciple. Since quantum mechanics is such a successful theory, our belief in the
uncertainty principle is reinforced. But if a way to “beat” the uncertainty principle
were ever discovered, quantum mechanics would give inconsistent results and
would have to be discarded as a valid theory of nature.

“Well,” you say, “what about Proposition A? Is it true, or is it not true,
that the electron either goes through hole 1 or it goes through hole 2?”’ The only
answer that can be given is that we have found from experiment that there is a
certain special way that we have to think in order that we do not get into incon-
sistencies. What we must say (to avoid making wrong predictions) is the following.
If one looks at the holes or, more accurately, if one has a piece of apparatus which
is capable of determining whether the electrons go through hole 1 or hole 2, then
one can say that it goes either through hole 1 or hole 2. But, when one does not
try to tell which way the electron goes, when there is nothing in the experiment to
disturb the electrons, then one may not say that an electron goes either through
hole 1 or hole 2. If one does say that, and starts to make any deductions from the
statement, he will make errors in the analysis. This is the logical tightrope on
which we must walk if we wish to describe nature successfully.

If the motion of all matter—as well as electrons—must be described in terms
of waves, what about the bullets in our first experiment? Why didn’t we see an
interference pattern there? It turns out that for the bullets the wavelengths were so
tiny that the interference patterns became very fine. So fine, in fact, that with any
detector of finite size one could not distinguish the separate maxima and minima.
What we saw was only a kind of average, which is the classical curve. In Fig. 1-5
we have tried to indicate schematically what happens with large-scale objects.
Part (a) of the figure shows the probability distribution one might predict for
bullets, using quantum mechanics. The rapid wiggles are supposed to represent
the interference pattern one gets for waves of very short wavelength. Any physical
detector, however, straddles several wiggles of the probability curve, so that the
measurements show the smooth curve drawn in part (b) of the figure.

1-7 First principles of quantum mechanics

We will now write a summary of the main conclusions of our experiments.
We will, however, put the results in a form which makes them true for a general
class of such experiments. We can write our summary more simply if we first
define an “ideal experiment” as one in which there are no uncertain external
influences, i.e., no jiggling or other things going on that we cannot take into ac-
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count. We would be quite precise if we said: “An ideal experiment is one in which
all of the initial and final conditions of the experiment are completely specified.”
What we will call “an event” is, in general, just a specific set of initial and final
conditions. (For example: “an electron leaves the gun, arrives at the detector, and
nothing else happens.”) Now for our summary.

SUMMARY

(1) The probability of an event in an ideal experiment is given by the square of
the absqlute value of a complex number ¢ which is called the probability

amplitude:
P = probability,
¢ = probability amplitude, (1.6)
P = ¢

(2) When an event can occur in several alternative ways, the probability ampli-
tude for the event is the sum of the probability amplitudes for each way
considered separately. There is interference:

¢ = ¢1 + oo,
P = |¢1 + ¢2|% 1.7

(3) If an experiment is performed which is capable of determining whether one or
another alternative is actually taken, the probability of the event is the sum
of the probabilities for each alternative. The interference is lost:

P o Py oobeiPy (1.8)

One might still like to ask: “How does it work? What is the machinery behind
the law?”” No one has found any machinery behind the law. No one can “explain”
any more than we have just “‘explained.” No one will give you any deeper repre-
sentation of the situation. We have no ideas about a more basic mechanism from
which these results can be deduced.

We would like to emphasize a very important difference between classical and
quantum mechanics. We have been talking about the probability that an electron
will arrive in a given circumstance. We have implied that in our experimental
arrangement (or even in the best possible one) it would be impossible to predict
exactly what would happen. We can only predict the odds! This would mean, if
it were true, that physics has given up on the problem of trying to predict exactly
what will happen in a definite circumstance. Yes! physics Aas given up. We do
not know how to predict what would happen in a given circumstance, and we believe
now that it is impossible—that the only thing that can be predicted is the prob-
ability of different events. It must be recognized that this is a retrenchment in our
earlier ideal of understanding nature. It may be a backward step, but no one
has seen a way to avoid it.

We make now a few remarks on a suggestion that has sometimes been made
to try to avoid the description we have given: “Perhaps the electron has some kind
of internal works—some inner variables—that we do not yet know about. Perhaps
that is why we cannot predict what will happen. If we could look more closely at
the electron, we could be able to tell where it would end up.” So far as we know,
that is impossible. We would still be in difficulty. Suppose we were to assume that
inside the electron there is some kind of machinery that determines where it is
going to end up. That machine must also determine which hole it is going to g0
through on its way. But we must not forget that what is inside the electron should
not be dependent on what we do, and in particular upon whether we open or close
one of the holes. So if an electron, before it starts, has already made up its mind
(a) which hole it is going to use, and (b) where it is going to land, we should find
P, for those electrons that Have chosen hole 1, P, for those that have chosen hole
2, and necessarily the sum Py + P, for those that arrive through the two holes.
There seems to be no way around this. But we have verified experimentally that
that is not the case. And no one has figured a way out of this puzzle. So at the

1-10



present time we must limit ourselves to computing probabilities. We say “at the
present time,” but we suspect very strongly that it is something that will be with
us forever—that it is impossible to beat that puzzle—that this is the way nature

really is.

1-8 The uncertainty principle

This is the way Heisenberg stated the uncertainty principle originally: If you
make the measurement on any object, and you can determine the x-component of
its momentum with an uncertainty Ap, you cannot, at the same time, know its
x-position more accurately than Ax = h/Ap, where 4 is a definite fixed number
given by nature. It is called “Planck’s constant,” and is approximately 6.63 X
10734 joule-seconds. The uncertainties in the position and momentum of a
particle at any instant must have their product greater than Planck’s constant.
This is a special case of the uncertainty principle that was stated above more
generally. The more general statement was that one cannot design equipment in
any way to determine which of two alternatives is taken, without, at the same
time, destroying the pattern of interference.

Let us show for one particular case that the kind of relation given by Heisen-
berg must be true in order to keep from getting into trouble. We imagine a modifi-
cation of the experiment of Fig. 1-3, in which the wall with the holes consists of a
plate mounted on rollers so that it can move freely up and down (in the x-direction),
as shown in Fig. 1-6. By watching the motion of the plate carefully we can try to
tell which hole an electron goes through. Imagine what happens when the detector
is placed at x = 0. We would expect that an electron which passes through hole 1
must be deflected downward by the plate to reach the detector. Since the vertical
component of the electron momentum is changed, the plate must recoil with an
equal momentum in the opposite direction. The plate will get an upward kick.
If the electron goes through the lower hole, the plate should feel a downward kick.
It is clear that for every position of the detector, the momentum received by the
plate will have a different value for a traversal via hole 1 than for a traversal via
hole 2. So! Without disturbing the electrons az all, but just by watching the plate,
we can tell which path the electron used.

Now in order to do this it is necessary to know what the momentum of the
screen is, before the electron goes through. So when we measure the momentum
after the electron goes by, we can figure out how much the plate’s momentum has
" changed. But remember, according to the uncertainty principle we cannot at the
same time know the position of the plate with an arbitrary accuracy. But if we do
not know exactly where the plate is, we cannot say precisely where the two holes are.
They will be in a different place for every electron that goes through. This means
that the center of our interference pattern will have a different location for each
electron. The wiggles of the interference pattern will be smeared out. We shall show
quantitatively in the next chapter that if we determine the momentum of the plate
sufficiently accurately to determine from the recoil measurement which hole was
used, then the uncertainty in the x-position of the plate will, according to the un-
certainty principle, be enough to shift the pattern observed at the detector up and
down in the x-direction about the distance from a maximum to its nearest minimum.
Such a random shift is just enough to smear out the pattern so that no interference
is observed.

The uncertainty principle “protects” quantum mechanics. Heisenberg recog-
nized that if it were possible to measure the momentum and the position simultane-
ously with a greater accuracy, the quantum mechanics would collapse. So he
proposed that it must be impossible. Then people sat down and tried to figure out
ways of doing it, and nobody could figure out a way to measure the position and
the momentum of anything—a screen, an electron, a billiard ball, anything—with
any greater accuracy. Quantum mechanics maintains its perilous but still correct
existence. !
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7

The Dependence of Amplitudes on Time

7-1 Atoms at rest; stationary states

We want now to talk a little bit about the behavior of probability amplitudes
in time. We say a “little bit,” because the actual behavior in time necessarily
involves the behavior in space as well. Thus, we get immediately into the most
complicated possible situation if we are to do it correctly and in detail. We are
always in the difficulty that we can either treat something in a logically rigorous
but quite abstract way, or we can do something which is not at all rigorous but
which gives us some idea of a real situation—postponing until later a more careful
treatment. With regard to energy dependence, we are going to take the second
course. We will make a number of statements. We will not try to be rigorous—but
will just be telling you things that have been found out, to give you some feeling
for the behavior of amplitudes as a function of time. As we go along, the precision
of the description will increase, so don’t get nervous that we seem to be picking
things out of the air. It is, of course, all out of the air—the air of experiment and
of the imagination of people. But it would take us too long to go over the historical
development, so we have to plunge in somewhere. We could plunge into the ab-
stract and deduce everything—which you would not understand—or we could
go through a large number of experiments to justify each statement. We choose
to do something in between.

An electron alone in empty space can, under certain circumstances, have a
certain definite energy. For example, if it is standing still (so it has no translational
motion, no momentum, or kinetic energy), it has its rest energy. A more compli-
cated object like an atom can also have a definite energy when standing still, but
it could also be internally excited to another energy level. (We will describe later
the machinery of this.) We can often think of an atom in an excited state as having
a definite energy, but this is really only approximately true. An atom doesn’t
stay excited forever because it manages to discharge its energy by its interaction
with the electromagnetic field. So there is some amplitude that a new state is
generated—with the atom in a lower state, and the electromagnetic field in a higher
state, of excitation. The total energy of the system is the same before and after,
but the energy of the atom is reduced. So it is not precise to say an excited atom
has a definite energy; but it will often be convenient and not too wrong to say that
it does.

[Incidentally, why does it go one way instead of the other way? Why does an
atom radiate light? The answer has to do with entropy. When the energy is in the
electromagnetic field, there are so many different ways it can be—so many different
places where it can wander—that if we look for the equilibrium condition, we
find that in the most probable situation the field is excited with a photon, and the
atom is de-excited. It takes a very long time for the photon to come back and find
that it can knock the atom back up again. It’s quite analogous to the classical
problem: Why does an accelerating charge radiate? It isn’t that it “wants” to lose
energy, because, in fact, when it radiates, the energy of the world is the same as it
was before. Radiation or absorption goes in the direction of increasing entropy.]

Nuclei can also exist in different energy levels, and in an approximation which
disregards the electromagnetic effects, we can say that a nucleus in an excited state
stays there. Although we know that it doesn’t stay there forever, it is often useful
to start out with an approximation which is somewhat idealized and easier to
think about. Also it is often a legitimate approximation under certain circum-
stances. (When we first introduced the classical laws of a falling body, we did not
include friction, but there is almost never a case in which there isn’t some friction.)
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Then there are the subnuclear “‘strange particles,” which have various masses.
But the heavier ones disintegrate into other light particles, so again it is not correct
to say that they have a precisely. definite energy. That would be true only if they
lasted forever. So when we make the approximation that they have a definite
energy, we are forgetting the fact that they must blow up. For the moment, then,
we will intentionally forget about such processes and learn later how to take them
into account.

Suppose we have an atom—or an electron, or any particle—which at rest
would have a definite energy Eo. By the energy E, we mean the mass of the whole
thing times ¢2. This mass includes any internal energy; so an excited atom has a
mass which is different from the mass of the same atom in the ground state. (The
ground state means the state of lowest energy.) We will call Eq the “energy at rest.”

For an atom at rest, the quantum mechanical amplitude to find an atom at a
place is the same everywhere; it does not depend on position. This means, of course,
that the probability of finding the atom anywhere is the same. But it means even
more. The probability could be independent of position, and still the phase of the
amplitude could vary from point to point. But for a particle at rest, the complete
amplitude is identical everywhere. It does, however, depend on the time. For a
particle in a state of definite energy E,, the amplitude to find the particle at (x, , 2)
at the time ¢ is

e .1

where a is some constant. The amplitude to be at any point in space is the same
for all points, but depends on time according to (7.1). We shall simply assume
this rule to be true.

Of course, we could also write (7.1) as

T 7.2)
with
hw = Eq = Mc%,

where M is the rest mass of the atomic state, or particle. There are three different
ways of specifying the energy: by the frequency of an amplitude, by the energy in
the classical sense, or by the inertia. They are all equivalent ; they are just different
ways of saying the same thing.

You may be thinking that it is strange to think of a “particle” which has
equal amplitudes to be found throughout all space. After all, we usually imagine
a “particle” as a small object located “somewhere.” But don’t forget the uncer-
tainty principle. If a particle has a definite energy, it has also a definite momentum.
If the uncertainty in momentum is zero, the uncertainty relation, Ap Ax = f,
tells us that the uncertainty in the position must be infinite, and that is just what
we are saying when we say that there is the same amplitude to find the particle
at all points in space.

If the internal parts of an atom are in a different state with a different total
energy, then the variation of the amplitude with time is different. If you don’t
know in which state it is, there will be a certain amplitude to be in one state and a
certain amplitude to be in another—and each of these amplitudes will have a dif-
ferent frequency. There will be an interference between these different components
—like a beat-note—which can show up as a varying probability. Something will
be “going on” inside of the atom—even though it is “at rest” in the sense that its
center of mass is not drifting. However, if the atom has one definite energy, the
amplitude is given by (7.1), and the absolute square of this amplitude does not
depend on time. You seg, then, that if a thing has a definite energy and if you ask
any probability question about it, the answer is independent of time. Although
the amplitudes vary with time, if the energy is definite they vary as an imaginary
exponential, and the absolute value doesn’t change.

That’s why we often say that an atom in a definite energy level is in a stationary
state. If you make any measurements of the things inside, you’ll find that nothing
(in probability) will change in time. In order to have the probabilities change in
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time, we have to have the interference of two amplitudes at two different frequencies,
and that means that we cannot know what the energy is. The object will have one
amplitude to be in a state of one energy and another amplitude to be in a state of
another energy. That’s the quantum mechanical description of something when
its behavior depends on time.

If we have a “condition” which is a mixture of two different states with differ-
ent energies, then the amplitude for each of the two states varies with time according
to Eq. (7.2), for instance, as

—i(Eq/f)t and e—i(Eg/fi)t. (7'3)

e
And if we have some combination of the two, we will have an interference. But
notice that if we added a constant to both energies, it wouldn’t make any difference.
If somebody else were to use a different scale of energy in which all the energies
were increased (or decreased) by a constant amount—say, by the amount A—then
the amplitudes in the two states would, from his point of view, be

e—i(El-}-A)t/ﬂ and e—i(E’g-}-A)tlﬁ. (7.4)

All of his amplitudes would be multiplied by the same factor e~*4/®t and all
linear combinations, or interferences, would have the same factor. When we take
the absolute squares to find the probabilities, all the answers would be the same.
The choice of an origin for our energy scale makes no difference; we can measure
energy from any zero we want. For relativistic purposes it is nice to measure the
energy so that the rest mass is included, but for many purposes that aren’t rela-
tivistic it is often nice to subtract some standard amount from all energies that
appear. For instance, in the case of an atom, it is usually convenient to subtract
the energy M c2, where M is the mass of all the separate pieces—the nucleus and
the electrons—which is, of course, different from the mass of the atom. For other
problems it may be useful to subtract from all energies the amount M,c?, where
M, is the mass of the whole atom in the ground state; then the energy that appears
is just the excitation energy of the atom. So, sometimes we may shift our zero of
energy by some very large constant, but it doesn’t make any difference, provided
we shift all the energies in a particular calculation by the same constant. So much
for a particle standing still.

*7-2 Uniform motion

If we suppose that the relativity theory is right, a particle at rest in one inertial
system can be in uniform motion in another inertial system. In the rest frame of
the particle, the probability amplitude is the same for all x, y, and z but varies with
t. The magnitude of the amplitude is the same for all ¢, but the phase depends on ¢.
We can get a kind of a picture of the behavior of the amplitude if we plot lines of
equal phase—say, lines of zero phase—as a function of x and z. For a particle at
rest, these equal-phase lines are parallel to the x-axis and are equally spaced in
the z-coordinate, as shown by the dashed lines in Fig. 7-1.

In a different frame—x’, y’, 2/, #—that is moving with respect to the particle
in, say, the x-direction, the x’ and # coordinates of any particular point in space
are related to x and ¢ by the Lorentz transformation. This transformation can be
represented graphically by drawing x’ and # axes, as is done in Fig. 7-1. (See
Chapter 17, Vol. I, Fig. 17-2.) You can see that in the x-#’ system, points of equal
phaset have a different spacing along the #-axis, so the frequency of the time
variation is different. Also there is a variation of the phase with x’, so the prob-
ability amplitude must be a function of x’.

t We are assuming that the phase should have the same value at corresponding points
in the two systems. This is a subtle point, however, since the phase of a quantum me-
chanical amplitude is, to a large extent, arbitrary. A complete justification of this assump-
tion requires a more detailed discussion involving interferences of two or more amplitudes.
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Under a Lorentz transformation for the velocity », say along the negative,
x-direction, the time ¢ is related to the time # by

¥ — xv/c®
V1= /2’

so our amplitude now varies as

e—CiIMEot e-<f/ﬂ><Eoz'/~/1—»2/cz—Eovx'/c”V1—v2/c2>

In the prime system it varies in space as well as in time. If we write the amplitude as _

—(i/h)(Ept'—p'z")
e ? s

we see that E, = Eo/+/1 — v2/c? is the energy computed classically for a
particle of rest energy E, travelling at the velocity v, and p’ = Elv/c? is the
corresponding particle momentum.

You know that x, = (¢, x, y, z) and p, = (E, pa, Py, p.) are four-vectors, and
that p,x, = Et — p- x is a scalar invariant. In the rest frame of the particle,
PuX, is just Et; so if we transform to another frame, Ez will be replaced by

EY — pl <X,

Thus, the probability amplitude of a particle which has the momentum p will be

proportional to
P (7.5)

where E, is the energy of the particle whose momentum is p, that is,

= Vpe)® + B, (7.6)
~ where E, is, as before, the rest energy. For nonrelativistic problems, we can write
E, = Mc* + Wy, 1.7)

where W, is the energy over and above the rest energy Mc? of the parts of the
atom. In general, W, would include both the kinetic energy of the atom as well
as its binding or excitation energy, which we can call the “internal” energy. We
would write

S
Wp = Wins + 537° (7.8)

and the amplitudes would be

o HPgtmin (7.9)

Because we will generally be doing nonrelativistic calculations, we will use this
form for the probability amplitudes.

Note that our relativistic transformation has glven us the variation of the
amplitude of an atom which moves in space without any additional assumptions.
The wave number of the space variations is, from (7.9),

A L
k_h’ (7.10)

so the wavelength is
2m ik :
A\ = et (7.11)
This is the same wavelength we have used before for particles with the momentum
p. This formula was first arrived at by de Broglie in just this way. For a moving
particle, the frequency of the amplitude variations is still given by

fw = W, (7.12)
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The absolute square of (7.9) is just 1, so for a particle in motion with a
definite energy, the probability of finding it is the same everywhere and does not
change with time. (It is important to notice that the amplitude is a complex wave.
If we used a real sine wave, the square would vary from point to point, which
would not be right.)

We know, of course, that there are situations in which particles move from
place to place so that the probability depends on position and changes with time.
How dp we describe such situations? We can do that by considering amplitudes
which are a superposition of two or more amplitudes for states of definite energy.
We have already discussed this situation in Chapter 48 of Vol. I—even for prob-
ability amplitudes! We found that the sum of two amplitudes with different wave
numbers k (that is, momenta) and frequencies w (that is, energies) gives inter-
ference humps, or beats, so that the square of the amplitude varies with space
and time. We also found that these beats move with the so-called “group velocity”
given by

by = 22,
£ AR
where Ak and Aw are the differences between the wave: numbers and frequencies
for the two waves. For more complicated waves—made up of the sum of many
amplitudes all near the same frequency—the group velocity is
dw

v = o2 45y

Taking w = E,/% and k = p/#, we see that

vy = %’L (1.14)
Using Eq. (7.6), we have
% = £ (7.15)
But E, = Mc2, so
% = £ - 18

which is just the classical velocity of the particle. Alternatively, if we use the non-
relativistic expressions, we have

_ " g .
w = 7 and k = Py
and
do & 4 fp'\ p
i i (m) M’ (D

which is again the classical velocity.

Our result, then, is that if we have several amplitudes for pure energy states
of nearly the same energy, their interference gives “lumps” in the probability that
move through space with a velocity equal to the velocity of a classical particle
of that energy. We should remark, however, that when we say we can add two
amplitudes of different wave number together to get a beat-note that will corre-
spond to a moving particle, we have introduced something new—something that
we cannot deduce from the theory of relativity. We said what the amplitude did
for a particle standing still and then deduced what it would do if the particle were
moving. But we cannot deduce from these arguments what would happen when
there are swo waves moving with different speeds. If we stop one, we cannot stop
the other. So we have added tacitly the extra hypothesis that not only is (7.9) a
possible solution, but that there can also be solutions with all kinds of p’s for the
same system, and that the different terms will interfere.
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3

Probability Amplitudes

3-1 The laws for combining amplitudes

When Schrodinger first discovered the correct laws of quantum mechanics,
he wrote an equation which described the amplitude to find a particle in various
places. This equation was very similar to the equations that were already known
to classical physicists—equations that they had used in describing the motion of
air in a sound wave, the transmission of light, and so on. So most of the time at
the beginning of quantum mechanics was spent in solving this equation. But at the
same time an understanding was being developed, particularly by Born and Dirac,
of the basically new physical ideas behind quantum mechanics. As quantum
mechanics developed further, it turned out that there were a large number of things
which were not directly encompassed in the Schrodinger equation—such as the
spin of the electron, and various relativistic phenomena. Traditionally, all courses
in quantum mechanics have begun in the same way, retracing the path followed in
the historical development of the subject. One first learns a great deal about clas-
sical mechanics so that he will be able to understand how to solve the Schrodinger
equation. Then he spends a long time working out various solutions. Only after
a detailed study of this equation does he get to the “advanced” subject of the
electron’s spin. :

We had also originally considered that the right way to conclude these lectures
on physics was to show how to solve the equations of classical physics in compli-
cated situations—such as the description of sound waves in enclosed regions, modes
of electromagnetic radiation in cylindrical cavities, and so on. That was the original
plan for this course. However, we have decided to abandon that plan and to give
instead an introduction to the quantum mechanics. We have come to the con-
clusion that what are usually called the advanced parts of quantum mechanics are,
in fact, quite simple. The mathematics that is involved is particularly simple,
involving simple algebraic operations and no differential equations or at most
only very simple ones. The only problem is that we must jump the gap of no
longer being able to describe the behavior in detail of particles in space. So this
is what we are going to try to do: to tell you about what conventionally would be
called the “advanced” parts of quantum mechanics. But they are, we assure you,
by all odds the simplest parts—in a deep sense of the word—as well as the most
basic parts. This is frankly a pedagogical experiment; it has never been done
before, as far as we know.

In this subject we have, of course, the difficulty that the quantum mechanical
behavior of things is quite strange. Nobody has an everyday experience to lean
on to get a rough, intuitive idea of what will happen. So there are two ways of
presenting the subject: We could either describe what can happen in a rather
rough physical way, telling you more or less what happens without giving the
precise laws of everything; or we could, on the other hand, give the precise laws
in their abstract form. But, then because of the abstractions, you-wouldn’t know
what they were all about, physically. The latter method is unsatisfactory because
it is completely abstract, and the first way leaves an uncomfortable feeling because
one doesn’t know exactly what is true and what is false. We are not sure how to
overcome this difficulty. You will notice, in fact, that Chapters 1 and 2 showed
this problem. The first chapter was relatively precise; but the second chapter was
a rough description of the characteristics of different phenomena. Here, we will
try to find a happy medium between the two extremes.
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Fig 3-1. Interference experiment with electrons.

We will begin in this chapter by dealing with some general quantum me-
chanical ideas. Some of the statements will be quite precise, others only partially
precise. It will be hard to tell you as we go along which is which, but by the time
you have finished the rest of the book, you will understand in looking back which
parts hold up and which parts were only explained roughly. The chapters which
follow this one will not be so imprecise. In fact, one of the reasons we have tried
carefully to be precise in the succeeding chapters is so that we can show you one of
the most beautiful things about quantum mechanics—how much can be deduced
from so little.

We begin by discussing again the superposition of probability amplitudes.
As an example we will refer to the experiment described in Chapter 1, and shown
again here in Fig. 3-1. There is a source s of particles, say electrons; then there
is a wall with two slits in it; after the wall, there is a detector located at some
position x. We ask for the probability that a particle will be found at x. Our first
general principle in quantum mechanics is that the probability that a particle will
arrive at x, when let out at the source s, can be represented quantitatively by the
absolute square of a complex number called a probability amplitude—in this case,
the “amplitude that a particle from s will arrive at x.”” We will use such amplitudes
so frequently that we will use a shorthand notation—invented by Dirac and
generally used in quantum mechanics—to represent this idea. We write the proba-
bility amplitude this way:

(Particle arrives at x | particle leaves s). 3.1

In other words, the two brackets ( ) are a sign equivalent to “the amplitude that”;
the expression at the right of the vertical line always gives the starting condition,
and the one at the left, the final condition. Sometimes it will also be convenient to
abbreviate still more and describe the initial and final conditions by single letters.
For example, we may on occasion write the amplitude (3.1) as

(x| s). 3.2)

We want to emphasize that such an amplitude is, of course, just a single number—
a complex number.

We have already seen in the discussion of Chapter 1 that when there are two
ways for the particle to reach the detector, the resulting probability is not the
sum of the two probabilities, but must be written as the absolute square of the
sum of two amplitudes. We had that the probability that an electron arrives at the
detector when both paths are open is

Pis = |61 + 62| (3.3)




Fig. 3-2, A more complicated inter-
ference experiment.
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We wish now to put this result in terms of our new notation. First, however, we
want to state our second general principle of quantum mechanics: When a particle
can reach a given state by two possible routes, the total amplitude for the process
is the sum of the amplitudes for the two routes considered separately. In our new
notation we write that

<X | S)both holes open = <X l s>through 1+ <x I s>through 2+ (34)

Incidentally, we are going to suppose that the holes 1 and 2 are small enough that
when we say an electron goes through the hole, we don’t have to discuss which part
of the hole. We could, of course, split each hole into pieces with a certain amplitude
that the electron goes to the top of the hole and the bottom of the hole and so on.
We will suppose that the hole is small enough so that we don’t have to worry about
this detdil. That is part of the roughness involved; the matter can be made more
precise, but we don’t want to do so at this stage.

Now we want to write out in more detail what we can say about the amplitude
for the process in which the electran reaches the detector at x by way of hole 1.
We can do that by using our third general principle: When a particle goes by some
particular route the amplitude for that route can be written as the product of the
amplitude to go part way with the amplitude to go the rest of the way. For the
setup of Fig. 3-1 the amplitude to go from s to x by way of hole 1 is equal to the
amplitude to go from s to 1, multiplied by the amplitude to go from 1 to x.

(x| $)via 1 = (x| 1)X1]s). 3.5

Again this result is not completely precise. We should also include a factor for the
amplitude that the electron will get through the hole at 1; but in the present case
it is a simple hole, and we will take this factor to be unity.

You will note that Eq. (3.5) appears to be written in reverse order. It is to
be read from right to left: The electron goes from s to 1 and then from 1 to x.
In summary, if events occur in succession—that is, if you can analyze one of the
routes of the particle by saying it does this, then it does this, then it does that—the
resultant amplitude for that route is calculated by multiplying in succession the
amplitude for each of the successive events. Using this law we can rewrite Eq.
(3.4) as

x| shotn = (x| 11 ]s5) + (x[2)(2]s).

Now we wish to show that just using these principles we can calculate a much
more complicated problem like the one shown in Fig. 3-2. Here we have two
walls, one with two holes, 1 and 2, and another which has three holes, a, b, and c.
Behind the second wall there is a detector at x, and we want to know the amplitude
for a particle to arrive there. Well, one way you can find this is by calculating the
superposition, or interference, of the waves that go through; but you can also do
it by saying that there are six possible routes and superposing an amplitude for
each. The electron can go through hole 1, then through hole @, and then to x; or
it could go through hole 1, then through hole b, and then to x; and so on. Accord-
ing to our second principle, the amplitudes for alternative routes add, so we should
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be able to write the amplitude from s to x as a sum of six separate amplitudes.
On the other hand, using the third principle, each of these separate amplitudes
can be written as a product of three amplitudes. For example, one of them is the
amplitude for s to 1, times the amplitude for 1 to a, times the amplitude for a to x.
Using our shorthand notation, we can write the complete amplitude to go from
stox as

(e|s) = (ela)a| 1XL|s) + (e |bYB|INL]s) + == + (x| e)e|2)2]s).
We can save writing by using the summation notation

(xls) = X (xlaalii]s). (3.6)

i=1,2

a=a,b,c

In order to make any calculations using these methods, it is, naturally, neces- :

sary to know the amplitude to get from one place to another. We will give a rough
idea of a typical amplitude. It leaves out certain things like the polarization of
light or the spin of the electron, but aside from such features it is quite accurate.
We give it so that you can solve problems involving various combinations of slits.
Suppose a particle with a definite energy is going in empty space from a location
ry to a location ro. In other words, it is a free particle with no forces on it. Except
for a numerical factor in front, the amplitude to go from ry to rg is

e'Pralh

(ra|r1) = ? (3.7

ri2
where r12 = rs — ry, and p is the momentum which is related to the energy E
by the relativistic equation

p’c® = E? — (moc?)?,

or the nonrelativistic equation
P2
b Kinetic energy.

Equation (3.7) says in effect that the particle has wavelike properties, the amplitude
propagating as a wave with a wave number equal to the momentum divided by #.

In the most general case, the amplitude and the corresponding probability
will also involve the time. For most of these initial discussions we will suppose
that the source always emits the particles with a given energy so we will not need to
worry about the time. But we could, in the general case, be interested in some
other questions. Suppose that a particle is liberated at a certain place P at a certain
time, and you would like to know the amplitude for it to arrive at some location,
say r, at some later time. This could be represented symbolically as the amplitude
(r,t = t;|P,t = 0). Clearly, this will depend upon both r and 7. You will get
different results if you put the detector in different places and measure at different
times. This function of r and 7, in general, satisfies a differential equation which is
a wave equation. For example, in a nonrelativistic case it is the Schrodinger equa-
tion. One has then a wave equation analogous to the equation for electromagnetic
waves or waves of sound in a gas. However, it must be emphasized that the wave
function that satisfies the equation is not like a real wave in space; one cannot
picture any kind of reality to this wave as one does for a sound wave.

Although one may be tempted to think in terms of “particle waves” when
dealing with one particle, it is not a good idea, for if there are, say, two particles,
the amplitude to find one at r; and the other at r, is not a simple wave in three-
dimensional space, but depends on the six space variables r1 and r,. If we are,
for example, dealing with two (or more) particles, we will need the following
additional principle: Provided that the two particles do not interact, the amplitude
that one particle will do one thing and the other one something else is the product
of the two amplitudes that the two particles would do the two things separately.
For example, if (a | 5,) is the amplitude for particle 1 to go from sy to a, and (b s9)
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is the amplitude for particle 2 to go from s, to b, the amplitude that both things
will happen together is

(a]s)(b]s2).

There is one more point to emphasize. Suppose that we didn’t know where
the particles in Fig. 3-2 come from before arriving at holes 1 and 2 of the first
wall. We can still make a prediction of what will happen beyond the wall (for
example, the amplitude to arrive at x) provided that we are given two numbers:
the amplitude to have arrived at 1 and the amplitude to have arrived at 2. In other
words, because of the fact that the amplitude for successive events multiplies, as
shown in Eq. (3.6), all you need to know to continue the analysis is two numbers—
in this particular case (1 | s) and (2 | s). These two complex numbers are enough
to predict all the future. That is what really makes quantum mechanics easy. It
turns out that in later chapters we are going to do just such a thing when we specify
a starting condition in terms of two (or a few) numbers. Of course, these numbers
depend upon where the source is located and possibly other details about the
apparatus, but given the two numbers, we do not need to know any more about
such details.
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Fig. 3-3. An experiment to deter-
mine which hole the electron goes through.
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3-2 The two-slit interference pattern

Now we would like to consider a matter which was discussed in some detail
in Chapter 1. This time we will do it with the full glory of the amplitude idea
‘to show you how it works out. We take the same experiment shown in Fig.
3-1, but now with the addition of a light source behind the two holes, as shown
in Fig. 3-3. In Chapter 1, we discovered the following interesting result. If
we looked behind slit 1 and saw a photon scattered from there, then the distribu-
tion obtained for the electrons at x in coincidence with these photons was the same
as though slit 2 were closed. The total distribution for electrons that had been .
“seen” at either slit 1 or slit 2 was the sum of the separate distributions and was
completely different from the distribution with the light turned off. This was true
at least if we used light of short enough wavelength. If the wavelength was made
longer so we could not be sure at which hole the scattering had occurred, the
distribution became more like the one with the light turned off.

Let’s examine what is happening by using our new notation and the principles
of combining amplitudes. To simplify the writing, we can again let ¢, stand for
the amplitude that the electron will arrive at x by way of hole 1, that is,

é1 = (x| IX1]s).

Similarly, we’ll let ¢, stand for the amplitude that the electron gets to the detector
by way of hole 2:
$2 = (x|2)(2]s).

These are the amplitudes to go through the two holes and arrive at x if there is no
light. Now if there is light, we ask ourselves the question: What is the amplitude
for the process in which the electron starts at s and a photon is liberated by the
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(0) (b) (c)

Fig. 3-4. The probability of count-
ing an electron at x in coincidence with a
photon at D in the experiment of Fig.
3 3: (a) for b = 0; (b) for b = a; (c)
for0 < b < a.

light source L, ending with the electron at x and a photon seen behind slit 1?
Suppose that we observe the photon behind slit 1 by means of a detector D, as
shown in Fig. 3-3, and use a similar detector D, to count photons scattered
behind hole 2. There will be an amplitude for a photon to arrive at D, and an
electron at x, and also an amplitude for a photon to arrive at D, and an electron
at x. Let’s try to calculate them.

Although we don’t have the correct mathematical formula for all the factors
that go into this calculation, you will see the spirit of it in the following discussion.
First, there is the amplitude (1 | s) that an electron goes from the source to hole 1.
Then we can suppose that there is a certain amplitude that while the electron is at
hole 1 it scatters a photon into the detector D;. Let us represent this amplitude by
a. Then there is the amplitude (x | 1) that the electron goes from slit 1 to the elec-
tron detector at x. The amplitude that the electron goes from s to x via slit 1 and
scatters a photon into D, is then

(x| 1a(l]s).

Or, in our previous notation, it is just a¢;.

There is also some amplitude that an electron going through slit 2 will scatter
a photon into counter D;. You say, “That’s impossible; how can it scatter into
counter D if it is only looking at hole 1?” If the wavelength is long enough, there
are diffraction effects, and it is certainly possible. If the apparatus is built well and
if we use photons of short wavelength, then the amplitude that a photon will be
scattered into detector 1, from an electron at 2 is very small. But to keep the
discussion general we want to take into account that there is always some such
amplitude, which we will call 5. Then the amplitude that an electron goes via
slit 2 and scatters a photon into D, is :

*12)b2]s) = bgs.

The amplitude to find the electron at x and the photon in D, is the sum of
two terms, one for each possible path for the electron. Each term is in turn made
up of two factors: first, that the electron went through a hole, and second, that the
photon is scattered by such an electron into detector |; we have

<electron at x

electron from s\ _
photon at D, agy + bes. (3.3)

photon from L/ ~

We can get a similar expression when the photon is found in the other detector
D,. If we assume for simplicity that the system is symmetrical, then a is also the
amplitude for a photon in D, when an electron passes through hole 2, and 5 is
the amplitude for a photon in D, when the electron passes through hole 1. The
corresponding total amplitude for a photon at D, and an electron at x is

electron from s
photon from L,

/electron at x

\photon at D, = a¢s + bo1. (3.9)

Now we are finished. We can easily calculate the probability for various
situations. Suppose that we want to know with what probability we get a count
in Dy and an electron at x. That will be the absolute square of the amplitude
given in Eq. (3.8), namely, just |[ag; + bgs|%. Let’s look more carefully at this
expression. First of all, if 4 is zero—which is the way we would like to design the
apparatus—then the answer is simply |¢;|? diminished in total amplitude by the
factor |a|®. This is the probability distribution that you would get if there were
only one hole—as shown in the graph of Fig. 3-4(a). On the other hand, if the
wavelength is very long, the scattering behind hole 2 into D; may be just about
the same as for hole 1. Although there may be some phases involved in a and b,
we can ask about a simple ease in which the two phases are equal. If a is practically
equal to b, then the total probability becomes |¢; + ¢5|2 multiplied by |a|2,
since the common factor a can be taken out. This, however, is just the probability
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distribution we would have gotten without the photons at all. Therefore, in the
case that the wavelength is very long—and the photon detection ineffective—you
return to the original distribution curve which shows interference effects, as shown
in Fig. 3-4(b). In the case that the detection is partially effective, there is an inter-
- ference between a lot of ¢; and a little of ¢,, and you will get an intermediate
distribution such as is sketched in Fig. 3-4(c). Needless to say, if we look for
coincidence counts of photons at D, and electrons at x, we will get the same kinds
of results. If you remember the discussion in Chapter 1, you will see that these
results give a quantitative description of what was described there.

Now we would like to emphasize an important point so that you will avoid
a common error. Suppose that you only want the amplitude that the electron ar-
rives at x, regardless of whether the photon was counted at D, or Dy. Should you
add the amplitudes given in Eqgs. (3.8) and (3.9)? No! You must never add
amplitudes for different and distinct final states. Once the photon is accepted by
one of the photon counters, we can always determine which alternative occurred
if we want, without any further disturbance to the system. Each alternative has a
probability completely independent of the other. To repeat, do not add amplitudes
for different final conditions, where by “final” we mean at that moment the
probability is desired—that is, when the experiment is “finished.” You do add the
amplitudes for the different indistinguishable alternatives inside the experiment,
before the complete process is finished. At the end of the process you may say that
you “don’t want to look at the photon.” That’s your business, but you still do not
add the amplitudes. Nature does not know what you are looking at, and she
behaves the way she is going to behave whether you bother to take down the data
or not. So here we must not add the amplitudes. We first square the amplitudes
for all possible different final events and then sum. The correct result for an
electron at x and a photon at either Dy or D, is

/e at x efroms \|?

\ph at D, | ph from L/
= lags + bga|® + lags + bey|%  (3.10)

efroms \
ph from L/

/e at x

2
\ph at D, *

3-3 Scattering from a crystal

Our next example is a phenomenon in which we have to analyze the inter-
-ference of probability amplitudes somewhat carefully. We look at the process of
the scattering of neutrons from a crystal. Suppose we have a crystal which has a
lot of atoms with nuclei at their centers, arranged in a periodic array, and a neutron
beam that comes from far away. We can label the various nuclei in the crystal by
an index i, where i runs over the integers 1, 2, 3, ... N, with N equal to the total
number of atoms. The problem is to calculate the probability of getting a neutron
into a counter with the arrangement shown in Fig. 3-5. For any particular atom
i, the amplitude that the neutron arrives at the counter C is the amplitude that the
neutron gets from the source S to nucleus , multiplied by the amplitude a that it
gets scattered there, multiplied by the amplitude that it gets from i to the counter
C. Let’s write that down:

(neutron at C | neutron from S)yi, ; = (C|i)a (i|S). @3.11)

In writing this equation we have assumed that the scattering amplitude a is the
same for all atoms. We have here a large number of apparently indistinguishable
routes. They are indistinguishable because a low-energy neutron is scattered from
a nucleus without knocking the atom out of its place in the crystal—no “record”
is left of the scattering. According to the earlier discussion, the total amplitude
for a neutron at C involves a sum of Eq. (3.11) over all the atoms:

N
(neutron at C | neutron from S) = Z (Cli)ya(i]|S). 3.12)
=1
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8

The Hamiltonian Matrix

8-1 Amplitudes and vectors

Before we begin the main topic of this chapter, we would like to describe a
number of mathematical ideas that are used a lot in the literature of quantum
mechanics. Knowing them will make it easier for you to read other books or
papers on the subject. The first idea is the close mathematical resemblance between
the equations of quantum mechanics and those of the scalar product of two vectors.
You remember that if X and ¢ are two states, the amplitude to start in ¢ and end
up in X can be written as a sum over a complete set of base states of the amplitude
to go from ¢ into one of the base states and then from that base state out again
into X:

(X|8) = D0 (x|iXi|¢). @.1)

all ¢

We explained this in terms of a Stern-Gerlach apparatus, but we remind you that
there is no need to have the apparatus. Equation (8.1) is a mathematical law that
is just as true whether we put the filtering equipment in or not—it is not always
necessary to imagine that the apparatus is there. We can think of it simply as a
formula for the amplitude (X | ¢).

We would like to compare Eq. (8.1) to the formula for the dot product of
two vectors B and 4. If B and A4 are ordinary vectors in three dimensions, we can
write the dot product this way:

D (B-e)e; - A), 8.2)

all ¢

with the understanding that the symbol e; stands for the three unit vectors in the
X, y, and z-directions. Then B - e, is what we ordinarily call B,; B - e, is what we
~ordinarily call B,; and so on. So Eq. (8.2) is equivalent to

B.A; + ByA, + B.A,,

which is the dot product B - 4.

Comparing Egs. (8.1) and (8.2), we can see the following analogy: The
states X and ¢ correspond to the two vectors 4 and B. The base states i correspond
to the special vectors e; to which we refer all other vectors. Any vector can be
represented as a linear combination of the three “base vectors” e;. Furthermore,
if you know the coefficients of each “base vector” in this combination—that is,
its three components—you know everything about a vector. In a similar way,
any quantum mechanical state can be described completely by the amplitude
(i| ¢) to go into the base states; ‘and if you know these coefficients, you know
everything there is to know about the state. Because of this close analogy, what
we have called a “state” is often also called a “state vector.”

Since the base vectors e; are all at right angles, we have the relation

e; e; = 0. (8.3)
This corresponds to the relations (5.25) among the base states i,
A7) = 8, (8.4)

You see now why one says that the base states 7 are all “orthogonal.”
8-1
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There is one minor difference between Eq. (8.1) and the dot product. We
have that
@]%) = (x| o)* (8.5)

AB = B'A.

But in vector algebra,

With the complex numbers of quantum mechanics we have to keep straight the
order of the terms, whereas in the dot product, the order doesn’t matter.
Now consider the following vector equation:

A=) efei A (8.6)

%

It’s a little unusual, but correct. It means the same thing as
A= Aie; = Ase, + Aye, + Ase.. 8.7

Notice, though, that Eq. (8.6) involves a quantity which is different from a dot
product. A dot product is just a number, whereas Eq. (8.6) is a vector equation.
One of the great tricks of vector analysis was to abstract away from the equations
the idea of a vector itself. One might be similarly inclined to abstract a thing that
is the analog of a “vector” from the quantum mechanical formula Eq. (8.1)—and
one can indeed. We remove the (x| from both sides Eq. (8.1) and write the
following equation (don’t get frightened—it’s just a notation and in a few minutes
you will find out what the symbols mean): :

|9 = 23 LiXil#). (8.8)

One thinks of the bracket (X | ¢) as.being divided into two pieces. The second
piece | ¢) is often called a ket, and the first piece (X | is called a bra (put together,
they make a “bra-ket”’—a notation proposed by Dirac); the half-symbols (x | and
| ¢) are also called state vectors. In any case, they are not numbers, and, in general,
we want the results of our calculations to come out as numbers; so such “unfinished”
quantities are only part-way steps in our calculations.

It happens that until now we have written all our results in terms of numbers.
How have we managed to avoid vectors? It is amusing to note that even in ordinary
vector algebra we could make all equations involve only numbers. For instance,
instead of a vector equation like

F = ma,
we could always have written
| C-F = C- (ma).
We have then an equation between dot products that is true for any vector C.
But if it is true for any C, it hardly makes sense at all to keep writing the C!

Now look at Eq. (8.1). It is an equation that is true for any X. So to save
writing, we should just leave out the X and write Eq. (8.8) instead. It has the same
information provided we understand that it should always be “finished” by “multi-
plying on the left by”’—which simply means reinserting—some (X | on both sides.
So Eq. (8.8) means exactly the same thing as Eq. (8.1)—no more, no less. When
you want numbers, you put in the (X | you want.

Maybe you have already wondered about the ¢ in Eq. (8.8). Since the equa-
tion is true for any ¢, why do we keep it? Indeed, Dirac suggests that the ¢ also
can just as well be abstracted away, so that we have only

| = 37 iXil. (8.9)

And this is the great law of quantum mechanics! (There is no analog in vector
analysis.) It says that if you put i» any two states X and ¢ on the left and right of
both sides, you get back Eq. (8.1). It is not really very useful, but it’s a nice
reminder that the equation is true for any two states.
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8-2 Resolving state vectors

Let’s look at Eq. (8.8) again; we can think of it in the following way. Any
state vector | ¢) can be represented as a linear combination with suitable coefficients
of a set of base “vectors”—or, if you prefer, as a superposition of “unit vectors”
in suitable proportions. To emphasize that the coefficients (i | ¢) are just ordinary
(complex) numbers, suppose we write

(i|¢) = Cu
Then Eq. (8.8) is the same as

1) = 22 19)C.. (8.10)

We can write a similar equation for any other state vector, say | x), with, of course,
different coefficients—say D;. Then we have

1) = 32 |19Ds. (8.11)

The D; are just the amplitudes (i | x).
Suppose we had started by abstracting the ¢ from Eq. 8.1). We would
have had ;

Xl = 22 (xliyil. (8.12)
Remembering that (x [ i) = (i | x)*, we can write this as
(x| = E D (i|. (8.13)

Now the interesting thing is that we can just multiply Eq. (8.13) and Eq. (8.10)
to get back (X | ¢). When we do that, we have to be careful of the summation
indices, because they are quite distinct in the two equations. Let’s first rewrite
Eq. (8.13) as

x| =3 D} (jl,
i
which changes nothing. Then putting it together with Eq. (8.10), we have
(x1¢) = 32 Dj (j|i)Cs. (@8.14)
i j

Remember, though, that (j|i) = 4;;, so that in the sum we have left only the
terms with j = 7. We get
(x|¢) =37 DIc, (8.15)

where, of course, D;* = (i|x)* = (x|i), and C; = (i| ). Again we see the
close analogy with the dot product

A B =) 4B,

The only difference is the complex conjugate on D;. So Eq. (8.15) says that if
the state vectors (X | and | ¢) are expanded in terms of the base vectors (i]or|i),
the amplitude to go from ¢ to X is given by the kind of dot product in Eq. (8.15).
This equation is, of course, just Eq. (8.1) written with different symbols. - So we
have just gone in a circle to get used to the new symbols.

We should perhaps emphasize again that while space vectors in three dimen-
sions are described in terms of three orthogonal unit vectors, the base vectors | i)
of the quantum mechanical states must range over the complete set applicable to
any particular problem. Depending on the situation, two, or three, or five, or an
infinite number of base states may be involved.

We have also talked about what happens when particles go through an
apparatus. If we start the particles out in a certain state ¢, then send them through
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an apparatus, and afterward make a measurement to see if they are in state X, the ‘
result is described by the amplitude

x| 4] ). (8.16)

Such a symbol doesn’t have a close analog in vector algebra. (It is closer to tensor
algebra, but the analogy is not particularly useful.) We saw in Chapter 5, Eq.
(5.32), that we could write (8.16) as

x| 4l¢) = 30 x| 4] )G 6). 3.17)

This is just an example of the fundamental rule Eq. (8.9), used twice.
We also found that if another apparatus B was added in series with 4, then we
could write
(x| BA|¢) = D] (x|i)i| B] )| 4| k)k| ). (8.18)
ik
Again, this comes directly from Dirac’s method of writing Eq. (8.9)—remember
that we can always place a bar (]), which is just like the factor 1, between B and 4.
Incidentally, we can think of Eq. (8.17) in another way. Suppose we think
of the particle entering apparatus A4 in the state ¢ and coming out of 4 in the state
¥ (“psi”). In other words, we could ask ourselves this question: Can we find a ¢
such that the amplitude to get from y to X js always identically and everywhere the
same as the amplitude (X | 4 | $)? The answer is yes. We want Eq. (8.17) to be
replaced by

x|y = D x|i)i|¥) (8.19)

2

We can clearly do this if

@y = 21 A10Xi1e) = Gl 4]e), (8.20)

which determines y. “But it doesn’t determine y,” you say; “it only determines
(i | ¥).” However, (i | ¢} does determine y, because if you have all the coefficients
that relate y to the base states i, then y is uniquely defined. In fact, we can play
with our notation and write the last term of Eq. (8.20) as

gy = 20 @liNil4] ) @821)

Then, since this equation is true for all i, we can write simply

l¥) = 221141 9). (8.22)

Then we can say: “The state y is what we get if we start with ¢ and go through the

apparatus 4.”
One final example of the tricks of the trade. We start again with Eq. (8.17).
Since it is true for any X and ¢, we can drop them both! We then get}

A= |0al4] NGl (8:23)

What does it mean? It means no more, no less, than what you get if you put back
the ¢ and X. As it stands, it is an “open” equation and incomplete. If we multiply
it “on the left” by | ¢), it becomes

Ale) =2 )14 01 (8.24)

+ You might think we should write |4| instead of just 4. But then it would look like
the symbol for “absolute value of 4,” so the bars are usually dropped. In general, the
bar (|) behaves much like the factor one.
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which is just Eq. (8.22) all over again. In fact, we could have just dropped the
J’s from that equation and written

) = 4| ¢). (8.25)

The symbol 4 is neither an amplitude, nor a vector; it is a new kind of thing
called an operator. It is something which “operates on” a state to produce a new
state—Eq. (8.25) says that | y) is what results if 4 operates on | ¢). Again, it is
still an open equation until it is completed with some bra like (x| to give

X|¥) = (x| 4] ¢). (8.26)

The operator A is, of course, described completely if we give the matrix of ampli-
tudes (i | 4 | j)—also written A;;—in terms of any set of base vectors.

We have really added nothing new with all of this new mathematical notation.
One reason for bringing it all up was to show you the way of writing pieces of
equations, because in many books you will find the equations written in the
incomplete forms, and there’s no reason for you to be paralyzed when you come
across them. If you prefer, you can always add the missing pieces to make an
equation between numbers that will look like something more familiar.

Also, as you will see, the “bra” and “ket” notation is a Very convenient one.
For one thing, we can from now on identify a state by giving its state vector.
When we want to refer to a state of definite momentum P we can say: “the state
[p)”. Or we may speak of some arbitrary state | ¥). For consistency we will
always use the ket, writing | y), to identify a state. (It is, of course an arbitrary
choice; we could equally well have chosen to use the bra, (y [.)

8-3 What are the base states of the world?

We have discovered that any state in the world can be represented as a super-
position—a linear combination with suitable coefficients—of base states. You
may ask, first of all, what base states? Well, there are many different possibilities.
You can, for instance, project a spin in the z-direction or in some other direction.
There are many, many different representations, which are the analogs of the differ-
ent coordinate systems one can use to represent ordinary vectors. Next, what
coefficients? Well, that depends on the physical circumstances. Different sets of
coefficients correspond to different physical conditions. The important thing to
know about is the “space” in which you are working—in other words, what the
base states mean physically. So the first thing you have to know about, in gen-
eral, is what the base states are like. Then you can understand how to describe a
situation in terms of these base states.

We would like to look ahead a little and speak a bit about what the general
quantum mechanical description of nature is going to be—in terms of the now
current ideas of physics, anyway. First, one decides on a particular representation
for the base states—different representations are always possible. For example,
for a spin one-half particle we can use the plus and minus states with respect to the
z-axis. But there’s nothing special about the z-axis—you can take any other axis
you like. For consistency we’ll always pick the z-axis, however. Suppose we begin
with a situation with one electron. In addition to the two possibilities for the spin
(“up”and “down” along the z-direction), there is also the momentum of the electron.
We pick a set of base states, each corresponding to one value of the momentum.
What if the electron doesn’t have a definite momentum? That’s all right;
we’re just saying what the base states are. If the electron hasn’t got a definite
momentum, it has some amplitude to have one momentum and another amplitude
to have another momentum, and so on. And if it is not necessarily spinning
up, it has some amplitude to \be spinning up going at this momentum, and some
amplitude to be spinning down going at that momentum, and so on. The
complete description of an electron, so far as we know, requires only that the
base states be described by the momentum and the spin. So one acceptable set of
base states | i) for a single electron refer to different values of the momentum and

8-5



whether the spin is up or down. Different mixtures of amplitudes—that is, differ-
ent combinations of the C’s describe different circumstances. What any particular
electron is doing is described by telling with what amplitude it has an up-spin or a
down-spin and one momentum or another—for all possible momenta. So you
can see what is involved in a complete quantum mechanical description of a
single electron.

What about systems with more than one electron? Then the base states get
more complicated. Let’s suppose that we have two electrons. We have, first of all,
four possible states with respect to spin: both electrons spinning up, the first one
down and the second one up, the first one up and the second one down, or both
down. Also we have to specify that the first electron has the momentum py, and
the second electron, the momentum p,. The base states for two electrons require
the specification of two momenta and two spin characters. With seven electrons,
we have to specify seven of each.

If we have a proton and an electron, we have to specify the spin direction of the
proton and its momentum, and the spin direction of the electron and its momen-
tum. At least that’s approximately true. We do not really know what the correct
representation is for the world. It is all very well to start out by supposing that if
you specify the spin in the electron and its momentum, and likewise for a proton,
you will have the base states; but what about the “guts” of the proton? Let’s
look at it this way. In a hydrogen atom which has one proton and one electron,
we have many different base states to describe—up and down spins of the proton
and electron and the various possible momenta of the proton and electron. Then
there are different combinations of amplitudes C; which together describe the
character of the hydrogen atom in different states. But suppose we look at the
whole hydrogen atom as a “particle.” If we didn’t know that the hydrogen atom
was made out of a proton and an electron, we might have started out and said:
“Oh, I know what the base states are—they correspond to a particular momentum
of the hydrogen atom.” No, because the hydrogen atom has internal parts.
It may, therefore, have various states of different internal energy, and describing
the real nature requires more detail.

The question is: Does a proton have internal parts? Do we have to describe
a proton by giving all possible states of protons, and mesons, and strange particles?
We don’t know. And even though we suppose that the electron is simple, so that
all we have to tell about it is its momentum and its spin, maybe tomorrow we will
discover that the electron also has inner gears and wheels. It would mean that our
representation is incomplete, or wrong, or approximate—in the same way that a
representation of the hydrogen atom which describes only its momentum would be
incomplete, because it disregarded the fact that the hydrogen atom could have
become excited inside. If an electron could become excited jnside and turn into
something else like, for instance, a muon, then it would be described not just by
giving the states of the new particle, but presumably in terms of some more com-
plicated internal wheels. The main problem in the study of the fundamental particles
today is to discover what are the correct representations for the description of
nature. At the present time, we guess that for the electron it is enough to specify
its momentum and spin. We also guess that there is an idealized proton which has
its -mesons, and k-mesons, and so on, that all have to be specified. Several dozen
particles—that’s crazy! The question of what is a fundamental particle and what
is not a fundamental particle—a subject you hear so much about these days—is
the question of what is the final representation going to look like in the ultimate
quantum mechanical description of the world. Will the electron’s momentum
still be the right thing with which to describe nature? Or even, should the whole
question be put this way at all! This question must always come up in any scientific
investigation. At any rate, we see a problem—how to find a representation. We
don’t know the answer. We don’t even know whether we have the “right” problem,
but if we do, we must first attempt to find out whether any particular particle is
“fundamental” or not.

In the nonrelativistic quantum mechanics—if the energies are not too high,
so that you don’t disturb the inner workings of the strange particles and so forth—
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you can do a pretty good job without worrying about these details. You can just
decide to specify the momenta and spins of the electrons and of the nuclei; then
everything will be all right. In most chemical reactions and other low-energy
happenings, nothing goes on in the nuclei; they don’t get excited. Furthermore,
if a hydrogen atom is moving slowly and bumping quietly against other hydrogen
atoms—never getting excited inside, or radiating, or anything complicated like
that, but staying always in the ground state of energy for internal motion—you
can use an approximation in which you talk about the hydrogen atom as one
object, or particle, and not worry about the fact that it can do something inside.
This will be a good approximation as long as the kinetic energy in any collision
is well below 10 electron volts—the energy required to excite the hydrogen atom to
a different internal state. We will often be making an approximation in which
we do not include the possibility of inner motion, thereby decreasing the number
of details that we have to put into our base states. Of course, we then omit some
phenomena which would appear (usually) at some higher energy, but by making
such approximations we can simplify very much the analysis of physical problems.
For example, we can discuss the collision of two hydrogen atoms at low energy—or
any chemical process—without worrying about the fact that the atomic nuclei
could be excited. To summarize, then, when we can neglect the effects of any
internal excited states of a particle we can choose a base set which are the states of
definite momentum and z-component of angular momentum.

One problem then in describing nature is to find a suitable representation for
the base states. But that’s only the beginning. We still want to be able to say what
“happens.” If we know the “condition” of the world at one moment, we would like
to know the condition at a later moment. So we also have to find the laws that
determine how things change with time. We now address ourselves to this second
part of the framework of quantum mechanics—how states change with time.

8-4 How states change with time

We have already talked about how we can represent a situation in which we
put something through an apparatus. Now one convenient, delightful “apparatus”
to consider is merely a wait of a few minutes; that is, you prepare a state ¢, and
then before you analyze it, you just let it sit. Perhaps you let it sit in some particular
electric or magnetic field—it depends on the physical circumstances in the world.
At any rate, whatever the conditions are, you let the object sit from time #, to
time 7. Suppose that it is let out of your first apparatus in the condition ¢ at ¢,.
And then it goes through an “apparatus,” but the “apparatus” consists of just
delay until z,. During the delay, various things could be going on—external forces
applied or other shenanigans—so that something is happening. At the end of the
delay, the amplitude to find the thing in some state X is no longer exactly the same
as it would have been without the delay. Since “waiting” is just a special case of
an “‘apparatus,” we can describe what happens by giving an amplitude with the
same form as Eq. (8.17). Because the operation of “waiting” is especially impor-
tant, we'll call it U instead of 4, and to specify the starting and finishing times ¢,
and #5, we’ll write U(Z5, t;). The amplitude we want is

x| Uts, 11) | ¢). (8.27)

Like any other such amplitude, it can be represented in some base system or other
by writing it
2 x|l U, 1) | )| 8)- - (8.28)
1]

Then U is completely described by giving the whole set of amplitudes—the matrix
(i | Uts, 11) | J). (8.29)

We can point out, incidentally, that the matrix (i | U(t,, ;) | /) gives much
more detail than may be needed. The high-class theoretical physicist working in
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high-energy physics considers problems of the following general nature (because
it’s the way experiments are usually done). He starts with a couple of particles,
like a proton and a proton, coming together from infinity. (In the lab, usually one
particle is standing still, and the other comes from an accelerator that is practically
at infinity on atomic level.) The things go crash and out come, say, two k-mesons,
six m-mesons, and two neutrons in certain directions with certain momenta,
What’s the amplitude for this to happen? The mathematics looks like this:
The ¢-state specifies the spins and momenta of the incoming particles. The x
would be the question about what comes out. For instance, with what amplitude
do you get the six mesons going in such-and-such directions, and the two neutrons
going off in these directions, with their spins so-and-so. In other words, X would
be specified by giving all the momenta, and spins, and so on of the final products.
Then the job of the theorist is to calculatp the amplitude (8.27). Howevér, he is
really only interested in the special case that 11 i8 —oo and 75 is +o0. (There is
no experimental evidence on the details of the process, only on what comes in
and what goes out.) The limiting case of U(ty, t1) as t; —» — oo and 73 — 4o
is called S, and what he wants is

x| S|¢).
Or, using the form (8.28), he would calculate the matrix

@181,

which is called the S-matrix. So if you see a theoretical physicist pacing the floor
and saying, “All I have to do is calculate the S-matrix,” you will know what he
is worried about.

How to analyze—how to specify the laws for—the S-matrix is an interesting
question. In relativistic quantum mechanics for high energies, it is done one way,
but in nonrelativistic quantum mechanics it can be done another way, which is
very convenient. (This other way can also be done in the relativistic case, but then
itis not so convenient.) It is to work out the U-matrix for a small interval of time—
in other words for ¢, and 7, close together. If we can find a sequence of such U’s
for successive intervals of time we can watch how things go as a function of time.
You can appreciate immediately that this way is not so good for relativity, because
you don’t want to have to specify how everything looks “simultaneously” every-
where. But we won’t worry about that—we’re Jjust going to worry about non-
relativistic mechanics.

Suppose we think of the matrix U for a delay from 7, until t3 which is greater
than 7,. In other words, let’s take three successive times: 7, less than ¢, less than ¢ 3.
Then we claim that the matrix that goes between t; and ¢3 is the product in suc-
cession of what happens when you delay from ¢, until 7, and then from 5 until 73.
It’s just like the situation when we had two apparatuses B and A4 in series. We can
then write, following the notation of Section 5-6,

Ults, 1) = Ults, 1) - Ults, 1y). (8.30)

In other words, we can analyze any time interval if we can analyze a sequence of
short time intervals in between. We just multiply together all the pieces; that’s the
way that quantum mechanics is analyzed nonrelativistically.

Our problem, then, is to understand the matrix U(ts, t,) for an infinitesimal
time interval—for ¢, = #; + Ar. We ask ourselves this: If we have a state ¢
now, what does the state look like an infinitesimal time Af later? Let’s see how we
write that out. Call the state at the time 7, | ¥(2)) (we show the time dependence
of ¥ to be perfectly clear that we mean the condition at the time 7). Now we ask
the question: What is the condition after the small interval of time Az later? The
answer is

[¥(t + A7) = U@t + A1, 0) | Y(2)). (8.31)

This means the same as we meant by (8.25), namely, that the amplitude to
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find X at the time ¢ + At is
X |9@ + An) = (x| U + A1, 1) | ¥(0)). (8.32)

Since we're not yet too good at these abstract things, let’s project our ampli-
tudes into a definite representation. If we multiply both sides of Eq. (8.31)
by (i |, we get

@@+ A)) = (| UE + AL, 1) | ¥(@)). (8.33)

We can also resolve the | (7)) into base states and write

A1+ an) = 32 @ UE + a1, 1] )G 9@ (8.34)

We can understand Eq. (8.34) in the following way. If we let Ci(f)= (i | ¥(2))
stand for the amplitude to be in the base state i at the time ¢, then we can think
of this amplitude (just a number, remember!) varying with time. Each C; becomes
a function of 7. And we also have some information on kow the amplitudes
C; vary with time. Each amplitude at (z + Af) is proportional to all of the other
amplitudes at 7 multiplied by a set of coefficients. Let’s call the U-matrix U;;, by
which we mean

Uij = (i|U|))

Then we can write Eq. (8.34) as
Cit + A = Y Uyt + A, H)C;(o). (8.35)
J

This, then, is how the dynamics of quantum mechanics is going to look.

We don’t know much about the Uj; yet, except for one thing. We know that
if At goes to zero, nothing can happen—we should get just the original state. So,
Ui — 1 and U;; — 0, if i # j. In other words, U;; — &;; for Az — 0. Also, we
can suppose that for small Az, each of the coefficients U;; should differ from §;;
by amounts proportional to Az; so we can write

Us; = 85 + Kij At (8.36)

However, it is usual to take the factor (—i/%)t out of the coefficients K;;, for
historical and other reasons; we prefer to write
Uit + 8, 1) = 84 — 3 Hif(1) At. (8.37)
It is, of course, the same as Eq. (8.36) and, if you wish, just defines the coefficients
H;;(?). The terms H;; are just the derivatives with respect to 7, of the coefficients
U;j(ty, ty), evaluated at 15 = #; = 1.
Using this form for U in Eq. (8.35), we have

Clt + A =Y [aﬁ S % Hii(1) At] C,(). (8.38)

J

Taking the sum over the §;; term, we get just C,-(t), which we can put on the other
side of the equation. Then dividing by Az, we have what we recognize as a derivative

et -co_ i 3 0G0
or
i 450 _ 2 HOC,0) (8.39)

T We are in a bit of trouble here with notation. In the factor (—i/%), the i means the
imaginary unit /=1, and not the index i that refers to the ith base state! We hope that
you won't find it too confusing.
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You remember that Cy(7) is the amplitude (i | ) to find the state y in one of
the base states i (at the time 7). So Eq. (8.39) tells us how each of the coefficients
(i | @) varies with time. But that is the same as saying that Eq. (8.39) tells us how
the state y varies with time, since we are describing y in terms of the amplitudes
(i | ¢). The variation of y in time is described in terms of the matrix H;;, which has
to include, of course, the things we are doing to the system to cause it to change.
If we know the H;;—which contains the physics of the situation and can, in general,
depend on the time—we have a complete description of the behavior in time of the
system. Equation (8.39) is then the quantum mechanical law for the dynamics
of the world.

(We should say that we will always take a set of base states which are fixed
and do not vary with time. There are people who use base states that also vary.
However, that’s like using a rotating coordinate system in mechanics, and we
don’t want to get involved in such complications.)

8-5 The Hamiltonian matrix

The idea, then, is that to describe the quantum mechanical world we need to
pick a set of base states i and to write the physical laws by giving the matrix of
coefficients H;;. Then we have everything—we can answer any question about
what will happen. So we have to learn what the rules are for finding the H’s to go
with any physical situation—what corresponds to a magnetic field, or an electric
field, and so on. And that’s the hardest part. For instance, for the new strange
particles, we have no idea what H;,’s to use. In other words, no one knows the
complete H;; for the whole world. (Part of the difficulty is that one can hardly hope
to discover the H;; when no one even knows what the base states are!) We do have
excellent approximations for nonrelativistic phenomena and for some other special
cases. In particular, we have the forms that are needed for the motions of electrons
in atoms—to describe chemistry. But we don’t know the full true H for the
whole universe.

The coefficients H;; are called the Hamiltonian mairix or, for short, just the
Hamiltonian. (How Hamilton, who worked in the 1830’s, got his name on a
quantum mechanical matrix is a tale of history.) It would be much better called
the energy matrix, for reasons that will become apparent as we work with it. So
the problem is: Know your Hamiltonian!

The Hamiltonian has one property that can be deduced right away, namely,
that

H}; = Hj.. (8.40)

This follows from the condition that the total probability that the system is in
some state does not change. If you start with a particle—an object or the world—
then you’ve still got it as time goes on. The total probability of finding it somewhere

is
Z lci(t)lz’

which must not vary with time. If this is to be true for any starting condition ¢,
then Eq. (8.40) must also be true.
As our first example, we take a situation in which the physical circumstances

are not changing with time; we mean the exfernal physical conditions, so that H
is independent of time. Nobody is turning magnets on and off. We also pick a
system for which only one base state is required for the description; it is an ap-
proximation we could make for a hydrogen atom at rest, or something similar.
Equation (8.39) then says

iﬁ-‘-i— = Hy,Cy. ( 8.41)
Only one equation—that’s all! And if H,, is constant, this differential equation
is easily solved to give

= (const)e /M H ¢, (8.42)
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This is the time dependence of a state with a definite energy £ = H 11. You see
why H;; ought to be called the energy matrix. It is the generalization of the energy
for more complex situations.

Next, to understand a little more about what the equations mean, we look
at a system which has two base states. Then Eq. (8.39) reads

2dC,
i —Fl = H;;,C; 4+ Hy2C,,
(8.43)
.- dC
i —dtz = HyCy 4+ H,,Co.

If the H’s are again independent of time, you can easily solve these equations.
We leave you to try for fun, and we’ll come back and do them later. Yes, you can
solve the quantum mechanics without knowing the H’s, so long as they are in-
dependent of time.

8-6 The ammonia molecule

We want now to show you how the dynamical equation of quantum mechanics
can be used to describe a particular physical circumstance. We have picked an
interesting but simple example in which, by making some reasonable guesses about
the Hamiltonian, we can work out some important—and even practical—results.
We are going to take a situation describable by two states: the ammonia molecule.

The ammonia molecule has one nitrogen atom and three hydrogen atoms
located in a plane below the nitrogen so that the molecule has the form of a pyramid,
as drawn in Fig. 8-1(a). Now this molecule, like any other, has an infinite number
of states. It can spin around any possible axis; it can be moving in any direction;
it can be vibrating inside, and so on, and so on. It is, therefore, not a two-state
system at all. But we want to make an approximation that all other states remain
fixed, because they don’t enter into what we are concerned with at the moment.
We will consider only that the molecule is spinning around its axis of symmetry
(as shown in the figure), that it has zero translational momentum, and that it is

vibrating as little as possible. That specifies all conditions except one: there are still.

the two possible positions for the nitrogen atom—the nitrogen may be on one side
of the plane of hydrogen atoms or on the other, as shown in Fig. 8-1(a) and (b).
So we will discuss the molecule as though it were a two-state system. We mean
that there are only two states we are going to really worry about, all other things
being assumed to stay put. You see, even if we know that it is spinning with a
certain angular momentum around the axis and that it is moving with a certain
momentum and vibrating in a definite way, there are still two possible states. We
will say that the molecule is in the state | 1) when the nitrogen is “up,” as in
Fig. 8-1(a), and is in the state | 2) when the nitrogen is “down,” as in (b). The states
| 7) and | 2) will be taken as the set of base states for our analysis of the behavior
of the ammonia molecule. At any moment, the actual state | ¥) of the molecule
can be represented by giving C, = (I | ¢), the amplitude to be in state | 1), and
C2 = (2|y), the amplitude to be in state | 2). Then, using Eq. (8.8) we can
write the state vector | ¢) as

[¥) = [IXI|¥) + | 2)(2 | ¥)

[¥) = [ )C1 + | 2)C,. (8.44)

Now the interesting thing is that if the molecule is known to be in some state
at some instant, it will not be in the same state a little while later. The two
C-coefficients will be changing with time according to the equations (8.43)—which
hold for any two-state system. Suppose, for example, that you had made some
observation—or had made some selection of the molecules—so that you know
that the molecule is initially in the state | I). At some later time, there is some
chance that it will be found in state | 2). To find out what this chance is, we have
to solve the differential equation which tells us how the amplitudes change with time.
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This is the time dependence of a state with a definite energy E = H,;. You see
why H;; ought to be called the energy matrix. It is the generalization of the energy
for more complex situations.
Next, to understand a little more about what the equations mean, we look

at a system which has two base states. Then Eq. (8.39) reads

i dC

! Tl = Hy;Cy + Hy5C,,

i, 9C2

dt

(8.43)
= Hy,Cy + H,,C,.

If the H’s are again independent of time, you can easily solve these equations.
We leave you to try for fun, and we’ll come back and do them later. Yes, you can
solve the quantum mechanics without knowing the H’s, so long as they are in-
dependent of time.

8-6 The ammonia molecule

We want now to show you how the dynamical equation of quantum mechanics
can be used to describe a particular physical circumstance. We have picked an
interesting but simple example in which, by making some reasonable guesses about
the Hamiltonian, we can work out some important—and even practical—results.
We are going to take a situation describable by two states: the ammonia molecule.

The ammonia molecule has one nitrogen atom and three hydrogen atoms
located in a plane below the nitrogen so that the molecule has the form of a pyramid,
as drawn in Fig. 8-1(a). Now this molecule, like any other, has an infinite number
of states. It can spin around any possible axis; it can be moving in any direction;
it can be vibrating inside, and so on, and so on. It is, therefore, not a two-state
system at all. But we want to make an approximation that all other states remain
fixed, because they don’t enter into what we are concerned with at the moment.
We will consider only that the molecule is spinning around its axis of symmetry
(as shown in the figure), that it has zero translational momentum, and that it is
vibrating as little as possible. That specifies all conditions except one: there are still
the two possible positions for the nitrogen atom—the nitrogen may be on one side
of the plane of hydrogen atoms or on the other, as shown in Fig. 8-1(a) and (b).
So we will discuss the molecule as though it were a two-state system. We mean
that there are only two states we are going to really worry about, all other things
being assumed to stay put. You see, even if we know that it is spinning with a
certain angular momentum around the axis and that it is moving with a certain
momentum and vibrating in a definite way, there are still two possible states. We
will say that the molecule is in the state | 1) when the nitrogen is “up,” as in
Fig. 8-1(a), and is in the state | 2) when the nitrogen is “down,” as in (b). The states
| I) and | 2) will be taken as the set of base states for our analysis of the behavior
of the ammonia molecule. At any moment, the actual state | %) of the molecule
can be represented by giving C; = (I | ), the amplitude to be in state | /), and
Cz = (2]y), the amplitude to be in state | 2). Then, using Eq. (8.8) we can
write the state vector | ) as

) = [IXI|¥) + | 2)2|¥)

[¥) = | I)Cy + | 2)Cs,. (8.44)

Now the interesting thing is that if the molecule is known to be in some state
at some instant, it will nof be in the same state a little while later. The two
C-coefficients will be changing with time according to the equations (8.43)—which
hold for any two-state system. Suppose, for example, that you had made some
observation—or had made some selection of the molecules—so that you know
that the molecule is initially in the state | ). At some later time, there is some
chance that it will be found in state | 2). To find out what this chance is, we have
to solve the differential equation which tells us how the amplitudes change with time.
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The only trouble is that we don’t know what to use for the coefficients H;; in
Eq. (8.43). There are some things we can say, however. Suppose that once the
molecule was in the state | 7) there was no chance that it could ever get into
| 2), and vice versa. Then H,; and H;3; would both be zero, and Eq. (8.43)
would read

3 4C, o A€
if -Il = H11C1, lﬁd—t2 = ngCz.

We can easily solve these two equations; we get
C, = (coust)e—(i/ﬁ)ﬂut, Cy = (const)e—(i/ﬁ)lfzzt_ (8.45)

These are just the amplitudes for Stationary states with the energies £, = H,,
and E; = H,,. We note, however, that for the ammonia molecule the two states
| 7) and | 2) have a definite symmetry. If nature is at al] reasonable, the matrix
elements H,, and Hj; must be equal. We'll call them both E,, because they

side. It is quite difficult; to get half-way through requires a lot of energy. How

can it get through if it hasn’t got enough energy? There is some amplitude that it

will penetrate the energy barrier. It is possible in quantum mechanics to sneak

R quickly across a region which is illegal energetically. There is, therefore, some

Eabs ;4’,“47 R o L6 ] 2)<z | ¥ 7 small amplitude that a molecule which starts in | 7) will get to the state | 2), The
')ﬁ/ ’ coefficients H,, and H 21 are not really zero. Again, by symmetry, they should
. 2 (A7 &y 2 both be the same—at least in magnitude. In fact, we already know that, in general,

/ "f /* ' H;; must be equal to the complex conjugate of Hj;, so they can differ only by a
phase. It turns out, as you will see, that there is no loss of generality if we take

them equal to each other. For later convenience we set them equal to a negative

C H C number; we take H, 2 = Hy; = —A4. We then have the following pair of
¥ u z é ) L equations:
‘ L ‘ o dCy
'{ l W = EOCI = ACz, (8.46)

. . ;. dCq ]

) ' —- = EoCy, — AC,. 8.47
o de Peloall g ih 2 = EyC, — 4c, S
4k These equations are simple enough and can be solved in any number of ways.

[ One convenient way is the following. Taking the sum of the two, we get

P dlL &
il oo , |
e H’@l CI ¢ /% oA , i d% (C1+ Co) = (B — 4)(C; + Cy), *

d !L whose solution is ‘

. £ C1+ Cy = ge= M EB—at (8.48)

‘} \ ! \ Then, taking the difference of (8.46) and (8.47), we find that ‘4

g A o d

lﬁzt' (C1 = C3) = (Ey + A)(C, — Co), 4

P , J=lo~¥.  which gives ‘ 3

} | l # (‘9‘“} )(Jﬂ } C1 e Cz e be—(z/ﬁ)(E°+A)t. (8.49) 5
et e We have called the two integration constants ¢ and b; they are, of course, to be g
chosen to give the appropriate starting condition for any particular physical ¢
problem. Now, by adding and subtracting (8.48) and (8.49), we get C, and Cy: 3

Gi() =

X7 o b i
e~ (/T (Bo—A)t o+ fe (t/ﬂ)(Eo+-4)t, (8.50)

2
2

Cz(l) a2 e—(i/ﬁ)(Eo—A)t W0 ge—(i/ﬁ)(l’?oﬁ-a‘i)l‘ (8.51)

[\S TR

They are the same except for the sign of the second term.
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We have the solutions; now what do they mean? (The trouble with quantum
mechanics is not only in solving the equations but in understanding what the
solutions mean!) First, notice that if & = 0, both terms have the same frequency
w = (Eq — A)/h. If everything changes at one frequency, it means that the system
is in a state of definite energy—here, the energy (E, — A). So thereis a stationary
state of this energy in which the two amplitudes C, and Cj are equal. We get the
result that the ammonia molecule has a definite energy (E, — A) if there are equal
amplitudes for the nitrogen atom to be “up” and to be “down.”

There is another stationary state possibleif @ = 0; both amplitudes then have
the frequency (Eo + A)/%. So there is another state with the definite energy
(Eo + A)if the two amplitudes are equal but with the opposite sign; C; = —C 1-
These are the only two states of definite energy. We will discuss the states of the
ammonia molecule in more detail in the next chapter; we will mention here only a
couple of things.

We conclude that because there is some chance that the nitrogen atom can
flip from one position to the other, the energy of the molecule is not just Ey, as we
would have expected, but that there are two energy levels (E, + 4) and (Eg — A).
Every one of the possible states of the molecule, whatever energy it has, is “split”
into two levels. We say every one of the states because, you remember, we picked
out one particular state of rotation, and internal energy, and so on. For each
possible condition of that kind there is a doublet of energy levels because of the
flip-flop of the molecule.

Let’s now ask the following question about an ammonia molecule. Suppose
that at # = 0, we know that a molecule is in the state | 1) or, in other words, that
C1(0) = 1and C5(0) = 0. What is the probability that the molecule will be found
in the state | 2) at the time ¢, or will still be found in state | 1) at the time z? Our
starting condition tells us what a and b are in Eqgs. (8.50) and (8.51). Letting
t = 0, we have that ; %

a+ b a—b>b

L) & g ], Gl - e

Clearly, a = b = 1. Putting these values into the formulas for C1(2) and Cy(2)
and rearranging some terms, we have

(i/h)At —(i/f)At
—(1|H)E e + e
Cl(t) =e i, ot( )a

)
. (GIWAt _ —(i/h)At
Co(t) = e CIMEot (e 5 e ) g
We can rewrite these as
Ci(t) = e=C1MEat o %’ : (8.52)
Ca(t) = ie—CiMBot gy AL, (8.53)

The two amplitudes have a magnitude that varies harmonically with time.
The probability that the molecule is found in state | 2) at the time ¢ is the
absolute square of Cy(7):
o At

|Ca)]? = sin® 5 (8.54)

The probability starts at zero (as it should), rises to one, and then oscillates back and
forth between zero and one, as shown in the curve marked P, of Fig. 8-2. The
probability of being in the | /) state does not, of course, stay at one. It “dumps”
into the second state until the probability of finding the molecule in the first state
is zero, as shown by the curve P, of Fig. 8-2. The probability sloshes back and

forth between the two.
A long time ago we saw what happens when we have two equal pendulums
with a slight coupling. (See Chapter 49, Vol. I.) When we lift one back and let go,
8-13



Fig. 8-2. The probability P, that
an ammonia molecule in state |1) at
t = O will be found in state |1) at t. The
probability P, that it will be found in (unlts of i)

state 2).

A

it swings, but then gradually the other one starts to swing. Pretty soon the second
pendulum has picked up all the energy. Then, the process reverses, and pendulum
number one picks up the energy. It is exactly the same kind of a thing. The speed
at which the energy is swapped back and forth depends on the coupling between
the two pendulums—the rate at which the “oscillation” is able to leak across,
Also, you remember, with the two pendulums there are two special motions—each
with a definite frequency—which we call the fundamental modes. If we pull both
pendulums out together, they swing together at one frequency. On the other hand,
if we pull one out one way and the other out the other way, there is another sta-
tionary mode also at a definite frequency.

Well, here we have a similar situation—the ammonia molecule is mathe-
matically like the pair of pendulums. These are the two frequencies—(E, + A4)/A
and (Ey — A)/h—for when they are oscillating together, or oscillating opposite:.

The pendulum analogy is not much deeper than the principle that the same
equations have the same solutions. The linear equations for the amplitudes (8.39)
are very much like the linear equations of harmonic oscillators. (In fact, this is
the reason behind the success of our classical theory of the index of refraction, in
which we replaced the quantum mechanical atom by a harmonic oscillator, even
though, classically, this is not a reasonable view of electrons circulating about a
nucleus.) If you pull the nitrogen to one side, then you get a superposition of
these two frequencies, and you get a kind of bear note, because the system is not
in one or the other states of definite frequency. The splitting of the energy levels
of the ammonia molecule is, however, strictly a quantum mechanical effect.

The splitting of the energy levels of the ammonia molecule has important
practical applications which we will describe in the next chapter. At long last we
have an example of a practical physical problem that you can understand with the
quantum mechanics! '
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Propagation in a Crystal Lattice

13-1 States for an electron in a one-dimensional lattice

You would, at first sight, think that a low-energy electron would have great
difficulty passing through a solid crystal. The atoms are packed together with
their centers only a few angstroms apart, and the effective diameter of the atom
for electron scattering is roughly an angstrom or so. That is, the atoms are large,
relative to their spacing, so that you would expect the mean free path between
collisions to be of the order of a few angstroms—which is practically nothing.
You would expect the electron to bump into one atom or another almost imme-
diately. Nevertheless, it is a ubiquitous phenomenon of nature that if the lattice
is perfect, the electrons are able to travel through the crystal smoothly and easily—
almost as if they were in a vacuum. This strange fact is what lets metals conduct
electricity so easily; it has also permitted the development of many practical
devices. It is, for instance, what makes it possible for a transistor to imitate the
radio tube. In a radio tube electrons move freely through a vacuum, while in the
transistor they move freely through a crystal lattice. The machinery behind the
behavior of a transistor will be described in this chapter; the next one will describe
the application of these principles in various practical devices.

The conduction of electrons in a crystal is one example of a very common
phenomenon. Not only can electrons travel through crystals, but other “things” like
atomic excitations can also travel in a similar manner. So the phenomenon which
we want to discuss appears in many ways in the study of the physics of the solid
state. =

You will remember that we have discussed many examples of two-state sys-
tems. Let’s now think of an electron which can be in either one of two positions,
in each of which it is in the same kind of environment. Let’s also suppose that
there is a certain amplitude to go from one position to the other, and, of course,
the same amplitude to go back, just as we have discussed for the hydrogen molec-
ular jon in Section 10-1. The laws of quantum mechanics then give the following
results. There are two possible states of definite energy for the electron. Each
state can be described by the amplitude for the electron to be in each of the two
basic positions. In either of the definite-energy states, the magnitudes of these
two amplitudes are constant in time, and the phases vary in time with the same
frequency. On the other hand, if we start the electron in one position, it will later
have moved to the other, and still later will swing back again to the first position.
The amplitude is analogous to the motions of two coupled pendulums.

Now consider a perfect crystal lattice in which we imagine that an electron
can be situated in a kind of “pit” at one particular atom and with some particular
energy. Suppose also that the electron has some amplitude to move into a different
pit at one of the nearby atoms. It is something like the two-state system—but with
an additional complication. When the electron arrives at the neighboring atom,
it can afterward move on to still another position as well as return to its starting
point. Now we have a situation analogous not to rwo coupled pendulums, but to
an infinite number of pendulums all coupled together. It is something like what
you see in one of those machines—made with a long row of bars mounted on a
torsion wire—that is used in first-year physics to demonstrate wave propagation.

If you have a harmonic oscillator which is coupled to another harmonic
oscillator, and that one to another, and so on . . . » and if you start an irregularity
in one place, the irregularity will propagate as a wave along the line. The same
situation exists if you place an electron at one atom of a long chain of atoms.
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Fig. 13-1. The base states of an
electron in a one-dimensional crystal.

Usually, the simplest way of analyzing the mechanical problem is not to thin

in terms of what happens if a pulse is started at a definite place, but rather i
terms of steady-wave solutions. There exist certain patterns of displacement
which propagate through the crystal as a wave of a single, fixed frequency. Nov
the same thing happens with the electron—and for the same reason, because it’
described in quantum mechanics by similar equations.
" You must appreciate one thing, however; the amplitude for the electron t
be at a place is an amplitude, not a probability. If the electron were simply leakin;
from one place to another, like water going through a hole, the behavior woul
be completely different. For example, if we had two tanks of water connecte
by a tube to permit some leakage from one to the other, then the levels wouls
approach each other exponentially. But for the electron, what happens is amplitud:
leakage and not just a plain probability leakage. And it’s a characteristic of th
imaginary term—the / in the differential equations of quantum mechanics—whicl
changes the exponential solution to an oscillatory solution.- What happens ther
is quite different from the leakage between interconnected tanks.

We want now to analyze quantitatively the quantum mechanical situation

Imagine a one-dimensional system made of a long line of atoms as shown ir
Fig. 13-1(a). (A crystal is, of course, three-dimensional but the physics is vers
much the same; once you understand the one-dimensional case you will be abl
to understand what happens in three dimensions.) Next, we want to see wha
happens if we put a single electron on this line of atoms. Of course, in a real crysta
there are already millions of electrons. But most of them (nearly all for an in
sulating crystal) take up positions in some pattern of motion each around its owr
atom—and everything is quite stationary. However, we now want to think abou
what happens if we put an extra electron in. We will not consider what the othe;
ones are doing because we suppose that to change their motion involves a lot o
excitation energy. We are going to add an electron as if to produce one slightly
bound negative ion. In watching what the one extra electrorrdoes we are making
an approximation which disregards the mechanics of the inside workings of the
atoms. :
Of course the electron could then move to another atom, transferring the
negative ion to another place. We will suppose that just as in the case of ar
electron jumping between two protons, the electron can jump from one atom tc
the neighbor on either side with a certain amplitude.

Now how do we describe such a system? What will be reasonable base states’
If you remember what we did when we had only two possible positions, you can
guess how it will go. Suppose that in our line of atoms the spacings are all equal
and that we number the atoms in sequence, as shown in Fig. 13-1(a). One of the
base states is that the electron is at atom number 6, another base state is that the
electron is at atom number 7, or at atom number 8, and so on. We can describe
the nth base state by saying that the electron is at atom number n. Let’s say thai
this is the base state | n). Figure 13-1 shows what we mean by the three base
states

[n—=1), |n), and |n 4+ 1).

Using these base states, any state | ¢) of our one-dimensional crystal can be de-
scribed by giving all the amplitudes (n | ¢) that the state | $) is in one of the
base states—which means the amplitude that it is located at one particular atom.
Then we can write the state | ¢) as a superposition of the base states

[¢) =D | n)n]| o). 3.1

n

Next, we are going to suppose that when the electron is at one atom, there is 2
certain amplitude that it will leak to the atom on either side. And we’ll take the
simplest case for which it can only leak to the nearest neighbors—to get to the
next-nearest neighbor, it has to go in two steps. We’ll take that the amplitudes for
the electron jump from one atom to the next is i4 /4 (per unit-time).
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For the moment we would like to write the amplitude (n | $) to be on the
nth atom as C,. Then Eq. (13.1) will be written

[#) = D [ n)C. (13.2)

n

If we knew each of the amplitudes C, at a given moment, we could take their
absolute squares and get the probability that you would find the electron if you
looked at atom » at that time.

What will the situation be at some later time? By analogy with the two-state
systems we have studied, we would propose that the Hamiltonian equations for
this system should be made up of equations like this:

% dcé‘f’) = ECo(1) — ACu1(f) — AC,_1(o). (13.3)

The first coefficient on the right, E,, is, physically, the energy the electron
would have if it couldn’t leak away from one of the atoms. (It doesn’t matter
what we call Eq; as we have seen many times, it represents really nothing but our
choice of the zero of energy.) The next term represents the amplitude per unit
time that the electron is leaking into the nth pit from the (n 4+ 1)st pit; and the
last term is the amplitude for leakage from the (n — I)st pit. As usual, we’ll
assume that 4 is a constant (independent of 7).

For a full description of the behavior of any state | ¢), we would have one
equation like (13.3) for every one of the amplitudes C,. Since we want to consider
a crystal with a very large number of atoms, we’ll assume that there are an in-
definitely large number of states—that the atoms go on forever in both directions.
(To do the finite case, we will have to pay special attention to what happens at the
ends.) If the number N of our base states is indefinitely large, then also our full
Hamiltonian equations are infinite in number! We’ll write down just a sample:

ih dcst_l = ECay — AC,; — 4G,
495~ £G,— dcy s~ G, @2

ih %}- = EoCn+1 e ACn . ACn+2,

13-2 States of definite energy

We could study many things about an electron in a lattice, but first let’s try
to find the states of definite energy. As we have seen in earlier chapters this means
that we have to find a situation in which the amplitudes all change at the same
frequency if they change with time at all. We look for solutions of the form

C, = gye—'3H% (13.5)

The complex number a,, tell us about the non-time-varying part of the amplitude
to find the electron at the nth atom. If we put this trial solution into the equations
of (13.4) to test them out, we get the result

Ea, = E¢a, — Aty 1 — Aa,_,. (13.6)

We have an infinite number of such equations for the infinite number of unknowns
a,—which is rather petrifying.

All we have to do is take the determinant . . .but wait! Determinants are
fine when there are 2, 3, or 4 equations. But if there are a large number—or an
infinite number—of equations, the determinants are not very convenient. We’d
better just try to solve the equations directl{r. First, let’s label the atoms by their
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Fig. 13-2. Variation of the real part
of C, with x,.

positions; we’ll say that the atom » is at x, and the atom (n + 1) is at x, ;. If
the atomic spacing is b—as in Fig. 13-1—we will have that x, , = x, + b.
By choosing our origin at atom zero, we can even have it that x, = nb. We can
rewrite Eq. (13.5) as

C, = alx)e ™A (13.7)
and Eq. (13.6) would become
Ea(x,) = Eya(x,) — Aa(x,,,) — Aa(x,_,). (13.8)
Or, using the fact that x, . ; = x, + b, we could also write
Ea(x,) = Eg(x,) — Aa(x, + b) — Aa(x, — b). (13.9)

This equation is somewhat similar to a differential equation. - It tells us that a
quantity, a(x), at one point, (x,), is related to the same physical quantity at some
neighboring points, (x, = b). (A differential equation relates the value of a func-
tion at a point to the values at infinitesimally nearby points.) Perhaps the methods
we usually use for solving differential equations will also work here; let’s try.

Linear differential equations with constant coefficients can always be solved
in terms of exponential functions. We can try the same thing here; let’s take as a
trial solution

ale) = &, (13.10)
Then Eq. (13.9) becomes
Ee™ = Eoe™™ — Ae™otD) _ gt (13.11)
We can now divide out the common factor **; we get
E=E, — Ae® — pe™™, (13.12)

The last two terms are just equal to (24 cos kb), so
E = E, — 2A cos kb. (13.13)

We have found that for any choice at all for the constant k there is a solution
whose energy is given by this equation. There are various possible energies
depending on k, and each k corresponds to a different solution. There are an
infinite number of solutions—which is not surprising, since we started out with
an infinite number of base states.

Let’s see what these solutions mean. For each k, the a’s are given by Eq.
(13.10). The amplitudes C, are then given by

s e o R (13.14)
where you should remember that the energy E also depends on k as given in Eq.
(13.13). The space dependence of the amplitudes is ¢** The amplitudes

oscillate as we go along from one atom to the next.

We mean that, in space, the amplitude goes as a complex oscillation—the
magnitude is the same at every atom, but the phase at a given time advances by the
amount (ikb) from one atom to the next.. We can visualize what is going on by
plotting a vertical line to show just the real part at each atom as we have done in
Fig. 13-2. The envelope of these vertical lines (as shown by the broken-line curve)
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is, of course, a cosine curve. The imaginary part of C, is also an oscillating function,
but is shifted 90° in phase so that the absolute square (which is the sum of the
squares of the real and imaginary parts) is the same for all the C’s.

Thus if we pick a k, we get a stationary state of a particular energy E. And
for any such state, the electron is equally likely to be found at every atom—there
is no preference for one atom or the other. Only the phase is different for different
atoms. Also, as time goes on the phases vary. From Eq. (13.14) the real and
imaginary parts propagate along the crystal as waves—namely as the real or
imaginary parts of '

¢ilkzn— (E/R)) (13.15)

The wave can travel toward positive or negative x depending on the sign we have
picked for k. ;

Notice that we have been assuming that the number k that we put in our
trial solution, Eq. (13.10), was a real number. We can see now why that must be
so if we have an infinite line of atoms. Suppose that k were an imaginary number,
say ik’. Then the amplitudes a,, would go as ", which means that the amplitude
would get larger and larger as we go toward large x’s—or toward large negative
x’s if k' is a negative number. This kind of solution would be O.K. if we were
dealing with line of atoms that ended, but cannot be a physical solution for an
infinite chain of atoms. It would give infinite amplitudes—and, therefore, infinite
probabilities—which can’t represent a real situation. Later on we will see an ex-
ample in which an imaginary k does make sense.

The relation between the energy E and the wave number k as given in Eq.
(13.13) is plotted in Fig. 13-3. As you can see from the figure, the energy can go
from (Ey — 24) at k = 0 to (E, + 24) at k = =x/b. The graph is plotted
for positive A; if A were negative, the curve would simply be inverted, but the
range would be the same. The significant result is that any energy is possible
within a certain range or “band” of energies, but no others. According to our
assumptions, if an electron in a crystal is in a stationary state, it can have no
energy other than values in this band.

According to Eq. (13.13), the smallest k’s correspond to low-energy states—
E = (E, — 2A). As k increases in magnitude (toward either positive or negative
values) the energy at first increases, but then reaches a maximum at k = == /b,
as shown in Fig. 13-3. For k’s larger than 7/b, the energy would start to decrease
again. But we do not really need to consider such values of k, because they do
not give new states—they just repeat states we already have for smaller k. We
can see that in the following way. Consider the lowest energy state for which
k = 0. The coefficient a(x,) is the same for all x,. Now we would get the same
energy for k = 2x/b. But then, using Eq. (13.10), we have that

a(x ) g ei(21r/b)z,,
" ;

However, taking x, to be at the origin, we can set x, = nb; then a(x,) becomes
ax) = ™ =1

The state described by these a(x,) is physically the same state we got for k = 0.
It does not represent a different solution.

As another example, suppose that k were n/4b. The real part of a(x,) would
vary as shown by curve 1 in Fig. 13-4. If k were seven times larger (k = Tn/4),
the real part of a(x,) would vary as shown by curve 2 in the figure. (The complete
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cosine curves don’t mean anything, of course; all that matters is their values at
the points x,. The curves are just to help you see how things are going.) You see
that both values of k give the same amplitudes at all of the x,’s.

The upshot is that we have all the possible solutions of our problem if we take
only k’s in a certain limited range. We’ll pick the range between —m/b and
4+ /b—the one shown in Fig. 13-3. In this range, the energy of the stationary
states increases uniformly with an increase in the magnitude of k.

One side remark about something you can play with. Suppose that the elec-
tron cannot only jump to the nearest neighbor with amplitude i4/%, but also has
the possibility to jump in one direct leap to the next nearest neighbor with some
other amplitude iB/A. You will find that the solution can again be written in the
form a, = e***»—this type of solution is universal. You will also find that the
stationary states with wave number k have an energy equal to (Ey — 24 cos kb —
2B cos 2kb). This shows that the shape of the curve of E against k is not universal,
but depends upon the particular assumptions of the problem. It is not always a
cosine wave—it’s not even necessarily symmetrical about some horizontal line.
It is true, however, that the curve always repeats itself outside of the interval from
— /b to w/b, so you never need to worry about other values of k.

Let’s look a little more closely at what happens for small k—that is, when
the variations of the amplitudes from one x, to the next are quite slow. Suppose
we choose our zero of energy by defining £, = 24; then the minimum of the
curve in Fig. 13-3 is at the zero of energy. For small enough %, we can write that

coskb =~ 1 — k%b2/2,
and the energy of Eq. (13.13) becomes
E = Ak®b2 (13.16)

We have that the energy of the state is proportional to the square of the wave
number which describes the spatial variations of the amplitudes C,.

13-3 Time-dependent states

In this section we would like to discuss the behavior of states in the one--
dimensional lattice in more detail. If the amplitude for an electron to be at x,
is C,, the probability of finding it there is |C,,|2. For the stationary states described
by Eq. (13.12), this probability is the same for all x, and does not change with time.
How can we represent a situation which we would describe roughly by saying an
electron of a certhin energy is localized in a certain region—so that it is more likely
to be found at one place than at some other place? We can do that by making
a superposition of several solutions like Eq. (13.12) with slightly different values
of k—and, therefore, slightly different energies. Then at ¢ = 0, at least, the ampli-
tude C, will vary with position because of the interference between the various
terms, just as one gets beats when there is a mixture of waves of different wave-
lengths (as we discussed in Chapter 48, Vol. I). So we can make up a ‘“wave packet”
with a predominant wave number & o, but with various other wave numbers near k. {

In our superposition of stationary states, the amplitudes with different &’s
will represent states of slightly different energies, and, therefore, of slightly different -
frequencies; the interference pattern of the total C, will, therefore, also vary with
time—there will be a pattern of “beats.” As we have seen in Chapter 48 of Volume
I, the peaks of the beats [the place where |C(x,)|? is large] will move along in x
as time goes on; they move with the speed we have called the “group velocity.”
We found that this group velocity was related to the variation of k with frequency by

dw

VUgroup = d_k;

(13.17)

t Provided we do not try to make the packet too narrow.
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the same derivation would apply equally well here. An electron state which is a ’
“clump”—namely one for which the C, vary in space like the wave packet of

Fig. 13-5—will move along our one-dimensional “crystal” with the speed » equal

to dw/dk, where w = E/h. Using (13.16) for E, we get that

2
o M5,

(13.18)

In other words, the electrons move along with a speed proportional to the typical
k. Equation (13.16) then says that the energy of such an electron is proportional
to the square of its velocity—it acts like a classical particle, So long as we look
at things on a scale gross enough that we don’t see the fine structure, our quantum
mechanical picture begins to give results like classical physics. In fact, if we solve
Eq. (13.18) for k and substitute into (13.16), we can write Re Cow) .

& %meff 2)2, (1319)

where m.s; is a constant. The extra “energy of motion” of the electron in a packet A /\ [\ N
depends on the velocity just as for a classical particle. The constant m.x—called > v Y :
the “effective mass”—is given by

h2
Mett 2A4b2 (13.20) Fig. 13-5. The real part of Clx,) as
_ . ' a function of x for a superposition of
Also notice that we can write several states of similar energy. (The
: spacing b is very small on the scale of
Megs v = hk. (13.21)  x shown.)

If we choose to call mes v the “momentum,” it is related to the wave number k
in the way we have described earlier for a free particle.

Don’t forget that mey has nothing to do with the real mass of an electron.
It may be quite different—although in real crystals it often happens to turn out to be
the same general order of magnitude, about 2 to 20 times the free-space mass of
the electron.

We have now explained a remarkable mystery—how an electron in a crystal
(like an extra electron put into germanium) can ride right through the crystal and
flow perfectly freely even though it has to hit all the atoms. It does so by having
its amplitudes going pip-pip-pip from one atom to the next, working its way through
the crystal. That is how a solid can conduct electricity.

13-4 An electron in a three-dimensional lattice

Let’s look for a moment at how we could apply the same ideas to see what
happens to an electron in three dimensions. The results turn out to be very similar.
Suppose we have a rectangular lattice of atoms with lattice spacings of a, b, cin
the three directions. (If you want a cubic lattice, take the three spacings all equal.)
Also suppose that the amplitude to leap in the x-direction to a neighbor is (i4,/%),
to leap in the y-direction is (i4,/%), and to leap in the z-direction is (id./h). Now
how should we describe the base states? As in the one-dimensional case, one
base state is that the electron is at the atom whose locations are X, y, z, where
(x, y, 2) is one of the lattice points. Choosing our origin at one atom, these points
are all at

X = n.q, y = nyb, and zZ = n,c,

where 7, ny, n, are any three integers. Instead of using subscripts to indicate such

points, we will now just use x, y, and z, understanding that they take on only their

values at the lattice points. Thus the base state is represented by the symbol

| electron at x, y, z), and the amplitude for an electron in some state | ¢) to be in

this base state is C(x, y, z) = (electronat x, y, z [ ¢). |
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As before, the amplitudes C(x, Y, z) may vary with timé. With our assump-
tions, the Hamiltonian equations should be like this:

dC s )
if _%y—'i)- = EOC(X, Y, Z) b Azc(x o a,y, Z) bz Azc(x - a), Z)
— A0y + b,2) — AC(KYy — b2)
- ALC(x, 2z +¢c) —AC(x Yy 2z — c). (13.22)

It looks rather long, but you can see where each term comes from.
Again we can try to find a stationary state in which all the C’s vary with time
in the same way. Again the solution is an exponential:

Clx,y,2) = e~ B ik +hytka) (13.23)
If you substitute this into (13.22) you see that it works, provided that the energy
E is related to k,, k,, and k, in the following way:

o Ly :
E = E, — 2A,cosk,a — 2A,cos kb — 2A,cos k. (13.24)

The energy now depends on the three wave numbers £, k,, k,, which, incidentally,
are the components of a three-dimensional vector k. In fact, we can write Eq.

(13.23) in vector notation as
Oz, 50) == ¢ g (13.25)

The amplitude varies as a complex plane wave in three dimensions, moving in the
direction of k, and with the wave number k = (k2 + k; + k22,

The energy associated with these stationary states depends on the three com-
ponents of k in the complicated way given in Eq. (13.24). The nature, of the
variation of E with k depends on relative signs and magnitudes of A;, A,, and A,.
If these three numbers are all positive, and if we are interested in small values of
k, the dependence is relatively simple.

Expanding the cosines as we did before to get Eq. (13.16), we can now get that

E = Epy, + A0%5 + AP’KS + AL (13.26)

For a simple cubic lattice with lattice spacing a we expect that A, and A,
and A, would be equal—say all are just A—and we would have just

E = Ep, + Ad’(K2 + K3 + k2),
or
E = B, + Aa’%’. (13.27)

This is just like Eq. (13.16). Following the arguments used there, we would con-
clude that an electron packet in three dimensions (made up by superposing many
states with nearly equal energies) also moves like a classical particle with some
effective mass.

In a crystal with a lower symmetry than cubic (or even in a cubic crystal in
which the state of the electron at each atom is not symmetrical) the three coefficients
A, Ay, and A, are different. Then the “effective mass” of an electron localized
in a small region depends on its direction of motion. It could, for instance, have a
different inertia for motion in the x-direction than for motion in the y-direction.
(The details of such a situation are sometimes described in terms of an “effective
mass tensor.”)

13-5 Other states in a lattice

According to Eq. (13.24) the electron states we have been talking about can
have energies only in a certain “band” of energies which covers the energy range
from the minimum energy

E, — 2(A, + A, + A)
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to the maximum energy
EO + 2(Az + Ay + Az)

Other energies are possible, but they belong to a different class of electron states,
For the states we have described, we imagined base states in which an electron is
placed on an atom of the crystal in some particular state, say the lowest energy
state.

If you have an atom in empty space, and add an electron to make an ion, the
ion can be formed in many ways. The electron can g0 on in such a way as to make
the state of lowest energy, or it can go on to make one or another of many possible
“excited states” of the ion each with a definite energy above the lowest energy. The
same thing can happen in a crystal. Let’s suppose that the energy E, we picked
above corresponds to base states which are ions of the lowest possible energy.
We could also imagine a new set of base states in which the electron sits near the
nth atom in a different way—in one of the excited states of the ion—so that the
energy E, is now quite a bit higher. As before there is some amplitude 4 (different
from before) that the electron will jump from its excited state at one atom to the
same excited state at a neighboring atom. The whole analysis goes as before; we
find a band of possible energies centered at a higher energy. There can, in general,
be many such bands each corresponding to a different level of excitation.

There are also other possibilities. There may be some amplitude that the
electron jumps from an excited condition at one atom to an unexcited condition
at the next atom. (This is called an interaction between bands.) The mathematical
theory gets more and more complicated as you take into account more and more
bands and add more and more coefficients for leakage between the possible states.
No new ideas are involved, however; the equations are set up much as we have
done in our simple example.

We should remark also that there is not much more to be said about the vari-
ous coefficients, such as the amplitude 4, which appear in the theory. Generally
they are very hard to calculate, so in practical cases very little is known theoretically
about these parameters and for any particular real situation we can only take
values determined experimentally.

There are other situations where the physics and mathematics are almost
exactly like what we have found for an electron moving in a crystal, but in which
the “object” that moves is quite different. For instance, suppose that our original
crystal—or rather linear lattice—was a line of neutral atoms, each with a loosely
bound outer electron. Then imagine that we were to remove one electron. Which
atom has lost its electron? Let C, now represent the amplitude that the electron
is missing from the atom at x,. There will, in general, be some amplitude id /A
that the electron at a neighboring atom—say the (n — I)st atom—will jump to
the nth leaving the (» — 1)st atom without its electron. This is the same as saying
that there is an amplitude 4 for the “missing electron” to jump from the nth
atom to the (n — 1)st atom. You can see that the equations will be exactly the
same—of course, the value of 4 need not be the same as we had before. Again
we will get the same formulas for the energy levels, for the “waves” of probability
which move through the crystal with the group velocity of Eq. (13.18), for the
effective mass, and so on. Only now the waves describe the behavior of the missing
electron—or “hole” as it is'called. So a “hole” acts just like a particle with a
certain mass meg;.  You can see that this particle will appear to have a positive
charge. We’ll have some more to say about such holes in the next chapter.

As another example, we can think of a line of identical neutral atoms one of
which has been put into an excited state—that is, with more than its normal
ground state energy. Let C, be the amplitude that the nth atom has the excitation.
It can interact with a neighboring atom by handing over to it the extra energy and
returning to the ground state. Call the amplitude for this process iA/h. You
can see that it’s the same mathematics all over again. Now the object which moves
is called an exciton. It behaves like a neutral “particle” moving through the crystal,
carrying the excitation energy. Such motion may be involved in certain biological
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processes such as vision, or photosynthesis. It has been guessed that the absorption
of light in the retina produces an “exciton” which moves through some periodic
structure (such as the layers in the rods we described in Chapter 36, Vol. 1; see
Fig. 36-5) to be accumulated at some special station where the energy is used to
induce a chemical reaction.

13-6 Scattering from imperfections in the lattice

We want now to consider the case of a single electron in a crystal which is
not perfect. Our earlier analysis says that perfect crystals have perfect conductivity
—that electrons can go slipping through the crystal, as in a vacuum, without friction.
One of the most important things that can stop an electron from going on forever
is an imperfection or irregularity in the crystal. As an example, suppose that
somewhere in the crystal there is a missing atom; or suppose that someone put
one wrong atom at one of the atomic sites so that things there are different than
at the other atomic sites. Say the energy, E, or the amplitude A could be different.
How would we describe what happens then? ‘

To be specific, we will return to the one-dimensional case and we will assume
that atom number “zero” is an “impurity” atom and has a different value of E,
than any of the other atoms. Let’s call this energy (E, + F). What happens?
When an electron arrives at atom “zero” there is some probability that the electron
is scattered backwards. If a wave packet is moving along and it reaches a place
where things are a little bit different, some of it will continue onward and some of
it will bounce back. It’s quite difficult to analyze such a situation using a wave
packet, because everything varies in time. It is much easier to work with steady-
state solutions. So we will work with stationary states, which we will find can be
made up of continuous waves which have transmitted and reflected parts. In
three dimensions we would call the reflected part the scattered wave, since it
would spread out in various directions.

We start out with a set of equations which are just like the ones in Eq. (13.6)
except that the equation for n = 0 is different from all the rest. The five equations
forn = —2, —1,0, +1, and +2 look like this:

Ea_,=Eqa_,— Aa_, — Aa_,,

Ea_, = Eya_, — Aay — Aa_,,
Eay = (Ey + F)ay — Aa, — Aa_,, (13.28)
Ea, = Eja, — Aa, — Aa,,

Ea, = Eya, — Aag — Aay,

There are, of course, all the other equations for |n| is greater than 2. They will
look just like Eq. (13.6).

For the general case, we really ought to use a different A for the amplitude
that the electron jumps to or from atom “zero,” but the main features of what
goes on will come out of a simplified example in which all the A’s are equal.

Equation (13.10) would still work as a solution for all of the equations except
the one for atom “zero”—it isn’t right for that one equation. We need a different
solution which we can cook up in the following way. Equation (13.10) represents
a wave going in the positive x-direction. A wave going in the negative x-direction
would have been an equally good solution. It would be written
ike

n

a(x,) = e~
The most general solution we could have taken for Eq. (13.6) would be a com-
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bination of a forward and a backward wave, namely

a, = ae™ + e~ (13.29)
This solution represents a complex wave of amplitude o moving in the + x-direction
and a wave of amplitude 8 moving in the —x-direction.

Now take a look at the set of equations for our new problem—the ones in
(13.28) together with those for all the other atoms. The equations involving
a,’s with n < —1 are all satisfied by Eq. (13.29), with the condition that & is related
to E and the lattice spacing b by

E=E, — 2A cos kb. (13.30)

The physical meaning is an “incident” wave of amplitude a approaching atom
“zero” (the “scatterer”) from the left, and a “scattered” or “reflected” wave of
amplitude 3 going back toward the left. We do not loose any generality if we set
the amplitude @ of the incident wave equal to 1. Then the amplitude £ is, in
general, a complex number.

We can say all the same things about the solutions of a, for n>1. The
coefficients could be different, so we would have for them

a, = 1" + de™*  for  n>1. (13.31)

Here, 7 is the amplitude of a wave going to the right and § a wave coming from
the right. We want to consider the physical situation in which a wave is originally
started only from the left, and there is only a “transmitted” wave that comes out
beyond the scatterer—or impurity atom. We will try for a solution in which
d = 0. We can, certainly, satisfy all of the equations for the a, except for the
middle three in Eq. (13.28) by the following trial solutions.

a, (forn <0) = e 4 Be—i=

a, (forn>0) = 7e™*=, (13.32)

The situation we are talking about is illustrated in Fig. 13-6.

By using the formulas in Eq. (13.32) for a_, and a_,, the three middle equa-
tions of Eq. (13.28) will allow us to solve for a, and also for the two coefficients
B and 7. So we have found a complete solution. Setting x,, = nb, we have to solve
the three equations

(E - EO){ez‘Ic(—b) 4o ﬂe—-ik(—b)} L —A{ao o eik(—zb) o ﬂe-—ik(—zb)},
(E — Ey — Flay = —A{7e® 4+ 49 4 M=
(E — E¥e™ = —A{7e™® 4 4},

(13.33)

Remember that E is given in terms of k by Eq. (13.30). If you substitute this
value for E into the equations, and remember that cos x = 3(” 4+ ™), you
get from the first equation that

a, =1+ B, (13.34)
and from the third equation that
a, = 1. (13.35)
These are consistent only if
Y=1+4. (13.36)

This equation says that the transmitted wave (7) is just the original incident wave
(1) with an added wave (f) equal to the reflected wave. This is not always true,
but happens to be so for a scattering at one atom only. If there were a clump of
impurity atoms, the amount added to the forward wave would not necessarily
be the same as the reflected wave.
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of finding a trapped electron at atomic
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We can get the amplitude 3 of the reflected wave from the middle equation
of Eq. (13.33); we find that

—~F
s gy k103
We have the complete solution for the lattice with one unusual atom.

You may be wondering how the transmitted wave can be “more” than the
incident wave as it appears in Eq. (13.34). Remember, though, that 3 and 7 are
complex numbers and that the number of particles (or rather, the probability of
finding a particle) in a wave is proportional to the absolute square of the amplitude.

In fact, there will be “conservation of electrons” only if

1B 12 = 1. (13.38)

* You can show that this is true for our solution.

13-7 Trapping by a lattice imperfection

There is another interesting situation that can arise if F is a negative number.
If the energy of the electron is lower at the impurity atom (at n = 0) than it is
anywhere else, then the electron can get caught on this atom. That is, if (E, + F)
is below the bottom of the band at (E, — 2A), then the electron can get “trapped”
in a state with E<E, — 2A. Such a solution cannot come out of what we have
done so far. We can get this solution, however, if we permit the trial solution we
took in Eq. (13.10) to have an imaginary number for k. Let’s set k = = ix. Again,
we can have different solutions for n <0 and for n>0. A possible solution for
n <0 might be :

a, (forn <0) = ce™*™, (13.39)

We have to take a plus sign in the exponent; otherwise the amplitude would get
indefinitely large for large negative values of n. Similarly, a possible solution for
n >0 would be

a, (forn>0) = c'e ", (13.40)

If we put these trial solutions into Eq. (13.28) all but the middle three are
satisfied provided that

E = Ey— A(e® + ™). (13.41)

Since the sum of the two exponential terms is always greater than 2, this energy
is below the regular band, and is what we are looking for. The remaining three
equations in Eq. (13.28) are satisfied if a, = ¢ = ¢’ and if « is chosen so that

A e m ~F (13.42)

Combining this equation with Eq. (13.41) we can find the energy of the trapped
electron; we get

E = E, — V4A2 + F2. (13.43)

The trapped electron has a unique energy—Ilocated somewhat below the con-
duction band.

Notice that the amplitudes we have in Eq. (13.39) and (13.40) do not say that
the trapped electron sits right on the impurity atom. The probability of finding
the electron at nearby atoms is given by the square of these amplitudes. For one
particular choice of the parameters it might vary as shown in the bar graph of
Fig. 13-7. The probability is greatest for finding the electron on the impurity
atom. For nearby atoms the probability drops off exponentially with the distance
from the impurity atom. This is another example of “barrier penetration.” From
the point-of-view of classical physics the electron doesn’t have enough energy to
get away from the energy “hole” at the trapping center. But quantum mechanically
it can leak out a little way.
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Semiconductors

14-1 Electrons and holes in semiconductors

One of the remarkable and dramatic developments in recent years has been
the application of solid state science to technical developments in electrical devices
such as transistors. The study of semiconductors led to the discovery of their
useful properties and to a large number of practical applications. The field is
changing so rapidly that what we tell you today may be incorrect next year. It
will certainly be incomplete. And it is perfectly clear that with the continuing
study of these materials many new and more wonderful things will be possible
as time goes on. You will not need to understand this chapter for what comes
later in this volume, but you may find it interesting to see that at least something
of what you are learning has some relation to the practical world.

There are large numbers of semiconductors known, but we’ll concentrate
on those which now have the greatest technical application. They are also the
ones that are best understood, and in understanding them we will obtain a degree
of understanding of many of the others. The semiconductor substances in most
common use today are silicon and germanium. These elements crystallize in the
diamond lattice, a kind of cubic structure in which the atoms have tetrahedral
bonding with their four nearest neighbors. They are insulators at very low tempera-
tures—near absolute zero—although they do conduct electricity somewhat at
room temperature. They are not metals; they are called semiconductors.

If we somehow put an extra electron into a crystal of silicon or germanium
which is at a low temperature, we will have just the situation we described in the
last chapter. The electron will be able to wander around in the crystal jumping
from one atomic site to the next. Actually, we have looked only at the behavior
of electrons in a rectangular lattice, and the equations would be somewhat different
for the real lattice of silicon or germanium. All of the essential points are, however,
illustrated by the results for the rectangular lattice.

As we saw in Chapter 13, these electrons can have energies only in a certain
energy band—called the conduction band. Within this band the energy is related
to the wave-number k of the probability amplitude C (see Eq. 13.24) by

E = Ey — 2A;cos k,a — 2A, cos kyb — 2A cos k,c. (14.1)

The A’s are the amplitudes for Jumping in the x-, y-, and z-directions, and a, b,
and c are the lattice spacings in these directions.
For energies near the bottom of the band, we can approximate Eq. (14.1) by

E = Ey + A.0°k3 + Ab%2 + A,c%2 (14.2)

(see Section 13-4).

If we think of electron motion in some particular direction, so that the com-
ponents of k are always in the same ratio, the energy is a quadratic function of
the wave number—and as we have seen of the momentum of the electron. We
can write ;
E = Enin + ak?, (14.3)

where « is some constant, and we can make a graph of E versus k as in Fig. 14-1.
We’ll call such a graph an “energy diagram.” An electron in a particular state of
snergy and momentum can be indicated by a point such as S in the figure.
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As we also mentioned in Chapter 13, we can have a similar situation if we
remove an electron from a neutral insulator. Then, an electron can jump over
from a nearby atom and fill the “hole,” but leaving another “hole” at the atom it
started from. We can describe this behavior by writing an amplitude to find the
hole at any particular atom, and by saying that the /ole can jump from one atom to
the next. (Clearly, the amplitudes A that the hole jumps from atom a to atom b
is just the same as the amplitude that an electron on atom & jumps into the hole
at atom a.) The mathematics is just the same for the hole as it was for the extra
electron, and we get again that the energy of the hole is related to its wave number
by an equation just like Eq. (14.1) or (14.2), except, of course, with different nu-
merical values for the amplitudes A4, 4,, and A,. The hole has an energy related
to the wave number of its probability amplitudes. Its energy lies in a restricted
band, and near the bottom of the band its energy varies quadratically with the
wave number—or momentum—just as in Fig. 14-1. Following the arguments of
Section 13-3, we would find that the hole also behaves like a classical particle
with a certain effective mass—except that in noncubic crystals the mass depends
on the direction of motion. So the hole behaves like a positive particle moving
through the crystal. The charge of the hole-particle is positive, because it is located
at the site of a missing electron: and when it moves in one direction there are ac-
tually electrons moving in the opposite direction.

If we put several electrons into a neutral crystal, they will move around much
like the atoms of a low-pressure gas. If there are not too many, their interactions
will not be very important. If we then put an electric field across the crystal, the
electrons will start to move and an electric current will flow. Eventually they would
all be drawn to one edge of the crystal, and, if there is a metal electrode there,
they would be collected, leaving the crystal neutral.

"Similarly we could put many holes into a crystal. They would roam around
at random unless there is an electric field. With a field they would flow toward
the negative terminal, and would be “collected”—what actually happens is that
they are neutralized by electrons from the metal terminal.

One can also have both holes and electrons together. If there are not too
many, they 'will all go their way independently. With an electric field, they will
all contribute to the current. For obvious reasons, electrons are called the negative
carriers and the holes are called the positive carriers.

We have so far considered that electrons are put into the crystal from the
outside, or are removed to make a hole. It is also possible to “create” an electron-
hole pair by taking a bound electron away from one neutral atom and putting it
some distance away in the same crystal. We then have a free electron and a free
hole, and the two can move about as we have described.

The energy required to put an electron info a state S—we say to ‘“create”
the state S—is the energy E~ shown in Fig. 14-2. It is some energy above Eg,.
The energy required to “‘create” a hole in some state S’ is the energy E* of Fig.
14-3, which is some energy greater than E.. Now if we create a pair in the states
S and S, the energy required is just E~ + ET.

Fig. 14-2. The energy E™ is required Fig. 14-3. The energy E™ is required
to “create” a free electron. to “create” a hole in the state S'.
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The creation of pairs is a common process (as we will see later), so many
people like to put Fig. 14-2 and Fig. 14-3 together on the same graph—with the
hole energy plotted downward, although it is, of course a positive energy. We have
combined our two graphs in this way in Fig. 14-4. The advantage of such a
graph is that the energy E,.i; = E~ + E* required to create a pair with the
electron in S and the hole in S is just the vertical distance between S and S’ as
shown in Fig. 14-4. The minimum energy required to create a pair is called the
“gap” energy and is equal to E;, + EF..

Sometimes you will see a simpler diagram called an energy level diagram which
is drawn when people are not interested in the k variable. Such a diagram—shown
in Fig. 14-5—just shows the possible energies for the electrons and holes.t

How can electron-hole pairs be created? There are several ways. For ex-
ample, photons of light (or x-rays) can be absorbed and create a pair if the photon
energy is above the energy of the gap. The rate at which pairs are produced is
proportional to the light intensity. If two electrodes are plated on a wafer of the
crystal and a “bias” voltage is applied, the electrons and holes will be drawn to
the electrodes. The circuit current will be proportional to the intensity of the light.
This mechanism is responsible for the phenomenon of photoconductivity and the
operation of photoconductive cells.

Electron hole pairs can also be produced by high-energy particles. When a
fast-moving charged particle—for instance, a proton or a pion with an energy of
tens or hundreds of Mev—goes through a crystal, its electric field will knock elec-
trons out of their bound states creating electron-hole pairs. Such events occur
hundreds of thousands of times per millimeter of track. After the passage of the
particle, the carriers can be collected and in doing so will give an electrical pulse.
This is the mechanism at play in the semiconductor counters recently put to use
for experiments in nuclear physics. Such counters do not require semiconductors,
they can also be made with crystalline insulators. In fact, the first of such counters
was made using a diamond crystal which is an insulator at room temperature.
Very pure crystals are required if the holes and electrons are to be able to move
freely to the electrodes without being trapped. The semiconductors silicon and
germanium are used because they can be produced with high purity in reasonable
large sizes (centimeter dimensions).

So far we have been concerned with semiconductor crystals at temperatures
near absolute zero. At any finite temperature there is still another mechanism by
which electron-hole pairs can be created. The pair energy can be provided from
the thermal energy of the crystal. The thermal vibrations of the crystal can trarsfer
their energy to a pair—giving rise to “spontaneous” creation.

The probability per unit time that the energy as large as the gap energy Eger
will be concentrated at one atomic site is proportional to e—Zsss/ “Twhere T is the
temperature and « is Boltzmann’s constant (see Chapter 40, Vol. I). Near absolute
zero there is no appreciable probability, but as the temperature rises there is
an increasing probability of producing such pairs. At any finite temperature the
production should continue forever at a constant rate giving more and more
negative and positive carriers. Of course that does not happen because after
awhile the electrons and holes accidentally find each other—the electron drops
into the hole and the excess energy is given to the lattice. We say that the electron
and hole “annihilate.” There is a certain probability per second that a hole meets
an electron and the two things annihilate each other.

If the number of electrons per unit volume is N, (n for negative carriers)
and the density of positive carriers is Ny, the chance per unit time that an electron
and a hole will find each other and annihilate is proportional to the product N,N,.
In equilibrium this rate must equal the rate that pairs are created. You see that in

T In many books this same energy diagram is interpreted in a different way. The energy
scale refers only to electrons. Instead of thinking of the energy of the hole, they think of
the energy an electron would have if it filled the hole. This energy is lower than the free-
electron energy—in fact, just the amount lower that you see in Fig. 14-5. With this
interpretation of the energy scale, the gap energy is the minimum energy which must be
given 70 an electron to move it from its bound state to the conduction band.
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equilibrium the product of NV, and N, should be given by some constant times the
Boltzmann factor:

N,N, = const e Feee/*T, (14.4)

When we say constant, we mean nearly constant. A more complete theory—which
includes more details about how holes and electrons “find” each other—shows
that the “constant” is slightly dependent upon temperature, but the major de-
pendence on temperature is in the exponential.

Let’s consider, as an example, a pure material which is originally neutral.
At a finite temperature you would expect the number of positive and negative
carriers to be equal, N, = N,. Then each of them should vary with temperature
as e Fean/ 2T The variation of many of the properties of a superconductor—the
conductivity for example—is mainly determined by the exponential factor because
all the other factors vary much more slowly with temperature. The gap energy for
germanium is about 0.72 ev and for silicon 1.1 ev.

At room temperature kT is about 1/40 of an electron volt. At these tempera-
tures there are enough holes and electrons to give a significant conductivity, while
at, say, 30°K—one-tenth of room temperature—the conductivity is imperceptible.
The gap energy of diamond is 6 or 7 ev and diamond is a good insulator at room
temperature.

14-2 Impure semiconductors

So far we have talked about two ways that extra electrons can be put into an
otherwise ideally perfect crystal lattice. One way was to inject the electron from
an outside source; the other way, was to knock a bound electron off a neutral
atom creating simultaneously an electron and a hole. It is possible to put electrons
into the conduction band of a crystal in still another way. Suppose we imagine a
crystal of germanium in which one of the germanium atoms is replaced by an
arsenic atom. The germanium atoms have a valence of 4 and the crystal structure
is controlled by the four valence electrons. Arsenic, on the other hand, has a
valence of 5. It turns out that a single arsenic atom can sit in the germanium lattice
(because it has approximately the correct size), but in doing so it must act as a
valence 4 atom—using four of its valence electrons to form the crystal bonds and
having one electron left over. This extra electron is very loosely attached—the
binding energy is less than 1/10 of a volt. At room temperature the electron easily
picks up that much energy from the thermal energy of the crystal, and then takes
off on its own—moving about in the lattice as a free electron. An impurity atom
such as the arsenic is called a donor site because it can give up a negative carrier
to the crystal. If a crystal of germanium is grown from a melt to which a very small
amount of arsenic has been added, the arsenic donor sites will be distributed
throughout the crystal and the crystal will have a certain density of negative
carriers built in.

You might think that these carriers would get swept away as soon as any small
electric field was put across the crystal. This will not happen, however, because
the arsenic atoms in the body of the crystal each have a positive charge. If the body
of the crystal is to remain neutral, the average density of negative carrier electrons
must be equal to the density of donor sites. If you put two electrodes on the edges
of such a crystal and connect them to a battery, a current will flow; but as the
carrier electrons are swept out at one end, new conduction electrons must be
introduced from the electrode on the other end so that the average density of
conduction electrons is left very nearly equal to the density of donor sites.

Since the donor sites are positively charged, there will be some tendency for
them to capture some of the conduction electrons as they diffuse around inside
the crystal. A donor site can, therefore, act as a trap such as those we discussed
in the last section. But if the trapping energy is sufficiently small—as it is for arsenic
—the number of carriers which are trapped at any one time is a small fraction
of the total. For a complete understanding of the behavior of semiconductors
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one must take into account this trapping. For the rest of our discussion, however,
we will assume that the trapping energy is sufficiently low and the temperature is
sufficiently high, that all of the donor sites have given up their electrons. This is,
of course, just an approximation.

It is also possible to build into a germanium crystal some impurity atom
whose valence is 3, such as aluminum. The aluminum atom tries to act as a
valence 4 object by stealing an extra electron. It can steal an electron from some
nearby germanium atom and end up as a negatively charged atom with an effective
valence of 4. Of course, when it steals the electron from a germanium atom, it
leaves a hole there; and this hole can wander around in the crystal as a positive
carrier. An impurity atom which can produce a hole in this way is called an
acceptor because it “accepts” an electron. If a germanium or a silicon crystal is
grown from a melt to which a small amount of aluminum impurity has been
added, the crystal will have built-in a certain density of holes which can act as
positive carriers.

When a donor or an acceptor impurity is added to a semiconductor, we say
that the material has been “doped.”

When a germanium crystal with some built-in donor impurities is at room
temperature, some conduction electrons are contributed by the thermally induced
electron-hole pair creation as well as by the donor sites. The electrons from both
sources are, naturally, equivalent, and it is the total number N, which comes into
play in the statistical processes that lead to equilibrium. If the temperature is not
too low, the number of negative carriers contributed by the donor impurity atoms
is roughly equal to the number of impurity atoms present. In equilibrium Eq.
(14.4) must still be valid; at a given temperature the product N,N,, is determined.
This means that if we add some donor impurity which increases N, the number
N, of positive carriers will have to decrease by such an amount that N,N, is
unchanged. If the impurity concentration is high enough, the number N, of nega-
tive carriers is determined by the number of donor sites and is nearly independent
of temperature—all of the variation in the exponential factor is supplied by N,,
even though it is much less than N,. An otherwise pure crystal with a small con-
centration of donor impurity will have a majority of negative carriers ; such a
material is called an “n-type” semiconductor.

If an acceptor-type impurity is added to the crystal lattice, some of the new
holes will drift around and annihilate some of the free electrons produced by
thermal fluctuation. This process will go on until Eq. (14.4) is satisfied. Under
equilibrium conditions the number of positive carriers will be increased and the
number of negative carriers will be decreased, leaving the product a constant. A
material with an excess of positive carriers is called a “p-type” semiconductor.

If we put two electrodes on a piece of semiconductor crystal and connect
them to a source of potential difference, there will be an electric field inside the
crystal. The electric field will cause the positive and the negative carriers to move,
and an electric current will flow. Let’s consider first what will happen in an
n-type material in which there is a large majority of negative carriers. For such
material we can disregard the holes; they will contribute very little to the current
because there are so few of them. In an ideal crystal the carriers would move across
without any impediment. In a real crystal at a finite temperature, however,—
especially in a crystal with some impurities—the electrons do not move completely
freely. They are continually making collisions which knock them out of their
original trajectories, that is, changing their momentum. These collisions are just
exactly the scatterings we talked about in the last chapter and occur at any irregu-
larity in the crystal lattice. In an n-type material the main causes of scattering are
the very donor sites that are producing the carriers. Since the conduction electrons
have a very slightly different energy at the donor sites, the probability waves are
scattered from that point. Even in a perfectly pure crystal, however, there are
(at any finite temperature) irregularities in the lattice due to thermal vibrations.
From the classical point of view we can say that the atoms aren’t lined up exactly
on a regular lattice, but are, at any instant, slightly out of place due to their thermal
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vibrations. The energy E, associated with each lattice point in the theory we
described in Chapter 13 varies a little bit from place to place so that the waves of
probability amplitude are not transmitted perfectly but are scattered in an irregular
fashion. At very high temperatures or for very pure materials this scattering may
become important, but in most doped materials used in practical devices the
impurity atoms contribute most of the scattering. We would like now to make an
estimate of the electrical conductivity of such a material.

When an electric field is applied to an n-type semiconductor, each negative
carrier will be accelerated in this field, picking up velocity until it is scattered from
one of the donor sites. This means that the carriers which are ordinarily moving
about in a random fashion with their thermal energies will pick up an average
drift velocity along the lines of the electric field and give rise to a current through
the crystal. The drift velocity is in general rather small compared with the typical
thermal velocities so that we can estimate the current by assuming that the average
time that the carrier travels between scatterings is a constant. Let’s say that the
negative carrier has an effective electric charge g,. In an electric field €, the force
on the carrier will be g,€. In Section 43-3 of Volume I we calculated the average
drift velocity under such circumstances and found that it is given by Fr/m, where
F is the force on the charge, 7 is the mean free time between collisions, and m is the
mass. We should use the effective mass we calculated in the last chapter but
since we want to make a rough calculation we will suppose that this effective mass
is the same in all directions. Here we will call it m,. With this approximation the
average drift velocity will be

_ 9T

m,

Varife (14.5)

Knowing the drift velocity we can find the current. Electric current density j is
just the number of carriers per unit volume, N,, multiplied by the average drift
velocity, and by the charge on each carrier. The current density is therefore

: N.gir
J=Npsgng, = —& (14.6)

my,

We see that the current density is proportional to the electric field; such a semi-
conductor material obeys Ohm’s law. The coefficient of proportionality between
J and &, the conductivity o, is

oc=——" (14.7)

For an n-type material the conductivity is relatively independent of temperature.
First, the number of majority carriers N, is determined primarily by the density
of donors in the crystal (so long as the temperature is not so low that too many
of the carriers are trapped). Second, the mean time between collisions 7,, is mainly
controlled by the density of impurity atoms, which is, of course, independent of
the temperature.

We can apply all the same arguments to a p-type material, changing only the
values of the parameters which appear in Eq. (14.7). If there are comparable
numbers of both negative and positive carriers present at the same time, we must
add the contributions from each kind of carrier. The total conductivity will be
given by

o Nedara | Nty

m, m,

(14.8)

For very pure materials, N, and N, will be nearly equal. They will be smaller
than in a doped material, so the conductivity will be less. Also they will vary
rapidly with temperature (like e~ Pe/*T a5 we have seen), so the conductivity

may change extremely fast with temperature.
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14-3 The Hall effect

It is certainly a peculiar thing that in a substance where the only relatively
free objects are electrons, there should be an electrical current carried by holes
that behave like positive particles. We would like, therefore, to describe an experi-
ment that shows in a rather clear way that the sign of the carrier of electric current
is quite definitely positive. Suppose we have a block made of semiconductor
material—it could also be a metal—and we put an electric field on it so as to draw a
current in some direction, say the horizontal direction as drawn in Fig. 14-6.
Now suppose we put a magnetic field on the block pointing at a right angle to
the current, say into the plane of the figure. The moving carriers will feel a mag-
netic force g(v X B). And since the average drift velocity is either right or left—
depending on the sign of the charge on the carrier—the average magnetic force on
the carriers will be either up or down. No, that is not right! For the directions
we have assumed for the current and the magnetic field the magnetic force on the
moving charges will always be up. Positive charges moving in the direction of j
(to the right) will feel an upward force. If the current is carried by negative charges,
they will be moving left (for the same sign of the conduction current) and they
will also feel an upward force. Under steady conditions, however, there is no
upward motion of the carriers because the current can flow only from left to right.
What happens is that a few of the charges initially flow upward, producing a sur-
face charge density along the upper surface of semiconductor—Ileaving an equal
and opposite surface charge density along the bottom surface of the crystal. The
charges pile up on the top and bottom surfaces until the electric forces they produce
on the moving charges just exactly cancel the magnetic force (on the average) so
that the steady current flows horizontally. The charges on the top and bottom
surfaces will produce a potential difference vertically across the crystal which can
be measured with a high-resistance voltmeter, as shown in Fig. 14-7. The sign
of the potential difference registered by the voltmeter will depend on the sign of
the carrier charges responsible for the current.

When such experiments were first done it was expected that the sign of the
potential difference would be negative as one would expect for negative conduction
electrons. People were, therefore, quite surprised to find that for some materials
the sign of the potential difference was in the opposite direction. It appeared that
the current carrier was a particle with a positive charge. From our discussion of
doped semiconductors it is understandable that an n-type semiconductor should
produce the sign of potential difference appropriate to negative carriers, and that
a p-type semiconductor should give an opposite potential difference, since the
current is carried by the positively charged holes.

. The original discovery of the anomalous sign of the potential difference in
the Hall effect was made in a metal rather than a semiconductor. It had been
assumed that in metals the conduction was always by electron; however, it was
found out that for berylium the potential difference had the wrong sign. It is now
understood that in metals as well as in semiconductors it is possible, in certain
circumstances, that the “objects” responsible for the conduction are holes, Al-
though it is ultimately the electrons in the crystal which do the moving, neverthe-
less, the relationship of the momentum and the energy, and the response to external
fields is exactly what one would expect for an electric current carried by positive
particles.

Let’s see if we can make a quantitative estimate of the magnitude of the volt-
age difference expected from the Hall effect. If the voltmeter in Fig. 14-7 draws a
negligible current, then the charges inside the semiconductor must be moving
from left to right and the vertical magnetic force must be precisely cancelled by a
vertical electric field which we will call & (the “tr” is for “transverse”). If this
electric field is to cancel the magnetic forces, we must have

Etr = —varigy X B. (14.9)

Using the relation between the drift velocity and the electric current density given
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in Eq. (14.6), we get

Byr o= == aN

The potential difference between the top and the bottom of the crystal is, of course
this electric field strength multiplied by the height of the crystal. The electric fielc
strength &, in the crystal is proportional to the current density and to the mag.
netic field strength. The constant of proportionality 1/gN is called the Hal
coefficient and is usually represented by the symbol Ry. The Hall coefficient de.
pends just on the density of carriers—provided that carriers of one sign are in a
large majority. Measurement of the Hall effect is, therefore, one convenient way
of determining experimentally the density of carriers in a semiconductor.

14-4 Semiconductor junctions

We would like to discuss now what happens if we take two pieces of germanium
or silicon with different internal characteristics—say different kinds or amounts
of doping—and put them together to make a “junction.” Let’s start out with what
is called a p-n junction in which we have p-type germanium on one side of the
boundary and n-type germanium on the other side of the boundary—as sketched
in Fig. 14-8. Actually, it is not practical to put together two separate pieces of
crystal and have them in uniform contact on an atomic scale. Instead, junctions
are made out of a single crystal which has been modified ire the two separate
regions. One way is to add some suitable doping impurity to the “melt” after
only half of the crystal has grown. Another way is to paint a little of the impurity
element on the surface and then heat the crystal causing some impurity atoms to
diffuse into the body of the crystal. Junctions made in these ways do not have a
sharp boundary, although the boundaries can be made as thin as 10™* centimeters
or so. For our discussions we will imagine an ideal situation in which these two
regions of the crystal with different properties meeting at a sharp boundary.

On the n-type side of p-n junction there are free electrons which can move
about, as well as the fixed donor sites which balance the overall electric charge.
On the p-type side there are free holes moving about and an equal number of
negative acceptor sites keeping the charge balanced. Actually, that describes the
situation before we put the two materials in contact. Once they are connected
together the situation will change near the boundary. When the electrons in
the n-type material arrive at the boundary they will not be reflected back as they
would at a free surface, but are able to go right on into the p-type material. Some
of the electrons of the n-type material will, therefore, tend to diffuse over into the
p-type material where there are fewer electrons. This cannot go on forever because
as we lose electrons from the n-side the net positive charge there increases until
finally an electric voltage is built up which retards the diffusion of electrons into
the p-side. In a similar way, the positive carriers of the p-type material can diffuse
across the junction into the n-type material. When they do this they leave behind
an excess of negative charge. Under equilibrium conditions the net diffusion cur-
rent must be zero. This brought about by the electric fields which are established
in such a way as to draw the positive carriers back toward the p-type material.

The two diffusion processes we have been describing go on simultaneously
and, you will notice, both act in the direction which will charge up the n-type
material in a positive sense and the p-type material in a negative sense. Because
of the finite conductivity of the semiconductor material, the change in potential
from the p-side to the n-side will occur in a relatively narrow region near the bound-
ary; the main body of each block of material will have a uniform potential. Let’s
imagine an x-axis in a direction perpendicular to the boundary surface. Then the
electric potential will vary with x, as shown in Fig. 14-9(b). We have also showr
in part (c) of the figure the expected variation of the density N, of n-carriers anc
the density N, of p-carriers. Far away from the junction the carrier densities
N,, and N, should be just the equilibrium density we would expect for individua
blocks of materials at the same temperature. (We have drawn the figure for ¢
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junction in which the p-type material is more heavily doped than the n-type
material.) Because of the potential gradient at the junction, the positive carriers
have to climb up a potential hill to get to the n-type side. This means that under
equilibrium conditions there can be fewer positive carriers in the n-type material
than there are in the p-type material. Remembering the laws of statistical me-
chanics, we expect that the ratio of p-type carriers on the two sides to be given by
the following equation:
: N, (n-side)
N, (p-side)
The product g,V in the numerator of the exponential is just the energy required to
carry a charge of g, through a potential difference V.
We have a precisely similar equation for the densities of the n-type carriers:
Nn(n-side) 2 e‘"an/KT
N, (p-side) :
If we know the equilibrium densities in each of the two materials, we can use
either of the two equations above to determine the potential difference across the
junction.

Notice that if Eqs. (14.10) and (14.11) are to give the same value for the
potential difference V, the product N,N, must be the same for the p-side as for
the n-side. (Remember that g, = —qp.) We have seen earlier, however, that this
product depends only on the temperature and the gap energy of the crystal.
Provided both sides of the crystal are at the same temperature, the two equations
are consistent with the same value of the potential difference.

Since there is a potential difference from one side of the junction to the other,
it looks something like a battery. Perhaps if we connect a wire from the n-type side
to the p-type side we will get an electrical current. That would be nice because
then the current would flow forever without using up any material and we would
have an infinite source of energy in violation of the second law of thermodynamics!
There is, however, no current if you connect a wire from the p-side to the n-side.
And the reason is easy to see. Suppose we imagine first a wire made out of a piece
of undoped material. When we connect this wire to the n-type side, we have a
junction. There will be a potential difference across this junction. Let’s say that
it is just one-half the potential difference from the p-type material to the n-type
material. When we connect our undoped wire to the p-type side of the junction,
there is also a potential difference at this junction—again, one-half the potential
drop across the p-n junction. At all the junctions the potential differences adjust
themselves so that there is no net current flow in the circuit. Whatever kind of wire
you use to connect together the two sides of the n-p junction, you are producing
two new junctions, and so long as all the junctions are at the same temperature, the
potential jumps at the junctions all compensate each other and no current will
flow in the circuit. It does turn out, however—if you work out the details—that if
some of the junctions are at a different temperature than the other junctions,
currents will flow. Some of the junctions will be heated and others will be cooled
by this current and thermal energy will be converted into electrical energy. This
effect is responsible for the operation of thermocouples which are used for measur-
ing temperatures, and of thermoelectric generators. The same effect is also used
to make small refrigerators.

If we cannot measure the potential difference between the two sides of an
n-p junction, how can we really be sure that the potential gradient shown in Fig.
14-9 really exists? One way is to shine light on the junction. When the light
photons are absorbed they can produce an electron-hole pair. In the strong
electric field that exists at the junction (equal to the slope of the potential curve of
Fig. 14-9) the hole will be driven into the p-type region and the electron will be
driven into the n-type region. If the two sides of the junction are now connected
to an external circuit, these extra charges will provide a current. The energy of
the light will be converted into electrical energy in the junction. The solar cells
which generate electrical power for the operation of some of our satellites operate
on this principle.

= e—%V/xT, (14.10)

(14.11)
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In our discussion of the operation of a semiconductor junction we have been
assuming that the holes and the electrons act more-or-less independently—except
that they somehow get into proper statistical equilibrium. When we were describing
the current produced by light shining on the junction, we were assuming that an
electron or a hole produced in the junction region would get into the main body of
the crystal before being annihilated by a carrier of the opposite polarity. In the
immediate vicinity of the junction, where the density of carriers of both signs is
approximately equal, the effect of electron-hole annihilation (or as it is often
called, “recombination™) is an important effect, and in a detailed analysis of a semi-
conductor junction must be properly taken into account. We have been assuming
that a hole or an electron produced in a junction region has a good chance of
getting into the main body of the crystal before recombining. The typical time
for an electron or a hole to find an opposite partner and annihilate it is for typical
semiconductor materials in the range between 10~% and 10~7 seconds. This time
is, incidentally, much longer than the mean free time 7 between collisions with
scattering sites in the crystal which we used in the analysis of conductivity. In
a typical n-p junction, the time for an electron or hole formed in the junction region
to be swept away into the body of the crystal is generally much shorter than the
recombination time. Most of the pairs will, therefore, contribute to an external
current.

14-5 Rectification at a semiconductor junction

We would like to show next how it is that a p-n junction can act like a rectifier.
If we put a voltage across the junction, a large current will flow if the polarity is in
one direction, but a very small current will flow if the same voltage is applied in the
opposite direction. If an alternating voltage is applied across the junction, a net
current will flow in one direction—the current is “rectified.” Let’s look again at
what is going on in the equilibrium condition described by the graphs of Fig.
14-9. In the p-type material there is a large concentration N, of positive carriers.
These carriers are diffusing around and a certain number of them each second
approach the junction. This current of positive carriers which approaches the
junction is proportional to N,. Most of them, however, are turned back by the
high potential hill at the junction and only the fraction e~¢"/*" gets through.
There is also a current of positive carriers approaching the junction from the other
side. This current is also proportional to the density of positive carriers in the
n-type region, but the carrier density here is much smaller than the density on the
p-type side. When the positive carriers approach the junction from the n-type
side, they find a hill with a negative slope and immediately slide downhill to the
p-type side of the junction. Let’s call this current /o. Under equilibrium the cur-
rents from the two directions are equal. We expect then the following relation:

Iy ~ Nyp(n-side) = N,(p-side)e=?"/*7, (14.12)

You will notice that this equation is really just the same as Eq. (14-10). We have
just derived it in a different way.

Suppose, however, that we lower the voltage on the n-side of the junction by
. an amount AV—which we can do by applying an external potential difference to
the junction. Now the difference in potential across the potential hill is no longer
V'but ¥ — AV. The current of positive carriers from the p-side to the n-side will
now have this potential difference in its exponential factor. Calling this current
I,, we have

I} ~ Ny(p-side)e 9V —AV)sT

This current is larger than J, by just the factor e?47/*”. So we have the following
relation between I; and 7,:
Iy m LogHRAKIT (14.13)

The current from the p-side increases exponentially with the externally applied
voltage AV. The current of positive carriers from the n-side, however, remains
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constant so long as AV is not too large. When they approach the barrier, these
carriers will still find a downhill potential and will all fall down to the p-side.
(If AV is larger than the natural potential difference ¥, the situation would change,
but we will not consider what happens at such high voltages.) The net current I of
positive carriers which flows across the junction is then the difference between the
currents from the two sides:

I = Iy(et¥a¥sT _ 1, (14.14)

The net current I of holes flows into the n-type region. There the holes diffuse
into the body of the n-region, where they are eventually annihilated by the majority
n-type carriers—the electrons. The electrons which are lost in this annihilation
will be made up by a current of electrons from the external terminal of the n-type
material.

When AV is zero, the net current in Eq. (14.14) is zero. For positive AV the
current increases rapidly with the applied voltage. For negative AV the current
reverses in sign, but the exponential term soon becomes negligible and the negative
current never exceeds Jo—which under our assumptions is rather small. This
back current / is limited by the small density of the minority carriers on the n-side
of the junction.

If you go through exactly the same analysis for the current of negative carriers
which flows across the junction, first with no potential difference and then with a
small externally applied potential difference AV, you get again an equation just
like (14.14) for the net electron current. Since the total current is the sum of the
currents contributed by the two carriers, Eq. (14.14) still applies for the total
current provided we identify J/, as the maximum current which can flow for a
reversed voltage.

The voltage-current characteristic of Eq. (14.14) is shown in Fig. 14-10. It
shows the typical behavior of solid state diodes—such as those used in modern
computers. We should remark that Eq. (14.14) is true only for small voltages.
For voltages comparable to or larger than the natural internal voltage difference
V, other effects come into play and the current no longer obeys the simple equation.

You may remember, incidentally, that we got exactly the same equation we
have found here in Eq. (14.14) when we discussed the “mechanical rectifier”—the
ratchet and pawl—in Chapter 46 of Volume I. We get the same equations in the
two situations because the basic physical processes are quite similar.

14-6 The transistor

Perhaps the most important application of semiconductors is in the transistor.
The transistor consists of two semiconductor junctions very close together. Its
operation is based in part on the same principles that we just described for the
semiconductor diode—the rectifying junction. Suppose we make a little bar of
germanium with three distinct regions, a p-type region, an n-type region, and
another p-type region, as shown in Fig. 14-11(a). This combination is called a
p-n-p transistor. Each of the two junctions in the transistor will behave much in
the way we have described in the last section. In particular, there will be a potential
gradient at each junction having a certain potential drop from the n-type region to
each p-type region. If the two p-type regions have the same internal properties,
the variation in potential as we go across the crystal will be as shown in the graph
of Fig. 14-11(b).

Now let’s imagine that we connect each of the three regions to external voltage
sources as shown in part (a) of Fig. 14-12. We will refer all voltages to the terminal
connected to the left-hand p-region so it will be, by definition, at zero potential.
We will call this terminal the emitter. The n-type region is called the base and it is
connected to a slightly negative potential. The right-hand p-type region is called
the collector, and is connected to a somewhat larger negative potential. Under
these circumstances the variation of potential across the crystal will be as shown in
the graph of Fig. 14-12(b).

Let’s first see what happens to the positive carriers, since it is primarily their
behavior which controls the operation of the p-n-p transistor. Since the emitter is
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at a relatively more positive potential than the base, a current of positive carriers
will flow from the emitter region into the base region. A relatively large current
flows, since we have a junction operating with a “forward voltage”—corresponding
to the right-hand half of the graph in Fig. 14-10. With these conditions, positive
carriers or holes are being “emitted” from the p-type region into the n-type region.
You might think that this current would flow out of the n-type region through the
base terminal 5. Now, however, comes the secret of the transistor. The n-type
region is made very thin—typically 102 cm or less, much narrower than its trans-
verse dimensions. This means that as the holes enter the n-type region they have
a very good chance of diffusing across to the other junction before they are anni-
hilated by the electrons in the n-type region. When they get to the right-hand
boundary of the n-type region they find a steep downward potential hill and im-
mediately fall into the right-hand p-type region. This side of the crystal is called
the collector because it “collects” the holes after they have diffused across the n-type
region. In a typical transistor, all but a fraction of a percent of the hole current
which leaves the emitter and enters the base is collected in the collector region,
and only the small remainder contributes to the net base current. The sum of the
base and collector currents is, of course, equal to the emitter current.

Now imagine what happens if we vary slightly the potential ¥, on the base
terminal. Since we are on a relatively steep part of the curve of Fig. 14-10, a
small variation of the potential ¥, will cause a rather large change in the emitter
current ,. Since the collector voltage ¥, is much more negative than the base
voltage, these slight variations in potential will not effect appreciably the steep
potential hill between the base and the collector. Most of the positive carriers
emitted into the n-region will still be caught by the collector. Thus as we vary
the potential of the base electrode, there will be a corresponding variation in the
collector current I,. The essential point, however, is that the base current I
always remains a small fraction of the collector current. The transistor is an
amplifier; a small current J; introduced into the base electrode gives a large current
—100 or so times higher—at the collector electrode.

What about the electrons—the negative carriers that we have been neglecting
so far? First, note that we do not expect any significant electron current to flow
between the base and the collector. With a large negative voltage on the collector,
the electrons in the base would have to climb a very high potential energy hill and
the probability of doing that is very small. There is a very small current of elec-
trons to the collector.

On the other hand, the electrons in the base can go into the emitter region.
In fact, you might expect the electron current in this direction to be comparable to
the hole current from the emitter into the base. Such an electron current isn’t
useful, and, on the contrary, is bad because it increases the total base current
required for a given current of holes to the collector. The transistor is, therefore,
designed to minimize the electron current to the emitter. The electron current is
proportional to N,(base), the density of negative carriers in the base material
while the hole current from the emitter depends on N,(emitter), the density of
positive carriers in the emitter region. By using relatively little doping in the n-type
material N,(base) can be made much smaller than N,(emitter). (The very thin
base region also helps a great deal because the sweeping out of the holes in this
region by the collector increases significantly the average hole current from the
emitter into the base, while leaving the electron current unchanged.) The net
result is that the electron current across the emitter-base junction can be made
much less than the hole current, so that the electrons do not play any significant
role in operation of the p-n-p transistor. The currents are dominated by motion of
the holes, and the transistor performs as an amplifier as we have described above.

It is also possible to make a transistor by interchanging the p-type and n-type
materials in Fig. 14-11. Then we have what is called an n-p-n transistor. In the

n-p-n transistor the main currents are carried by the electrons which flow from the
emitter into the base and from there to the collector. Obviously, all the arguments
we have made for the p-n-p transistor also apply to the n-p-n transistor if the po-
tentials of the electrodes are chosen with the opposite signs.
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