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 Teaching by touching 
Tactile instructions as a communication 

mean 
Difficulties 

Proof of concept implementation 
Experiment 

Analysis of the data collected 
 Design policies for building touch interpretation 

algorithms 

 Klinokinesis based control 
 Analysis of natural looking movements 

 

 



Part 1 
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 Teaching by touching 



Why humanoids? 

 They can use 
tools and 
infrastructures 
already available 
for humans 

 They can convey 
non-verbal 
information: ease 
communication 

 They can become 
a model for 
understanding 
humans 



Difficulties 

 Developing motions for 
humanoids with high number of 
DOFs (≥20) is    
                   difficult 

 
Highly 

dimensional 
spaces 

Time 
continuous 

Continuous 
state space 

連続時間 高次元空間 連続状態 

Continuous 
action space 

連続行動 

離散 
でも 

• Automatic learning is  
often impossible 



1. Task known beforehand: 

Transfer of knowledge 

Programmer's 
knowledge 

Examples:  
• Visual servoing 
• ZMP 
• CPG connections  
• Design of the state/action space  
                                       

プログラマ 
の知識 

Robot’s  
controller 

Programmer’s 
knowledge included 
in the control 
algorithms 
 



Transfer of knowledge 

2. Task partially known beforehand: 

Programmer's 
knowledge 

Symbols Database 
Modules / 

motion primitives   

User’s 
Task knowledge 

一般 
ユーザ 

Examples:  
• Teaching by watching 
• Mimesis model                                       

Selection 
and composition 



Transfer of knowledge 

3. Task unknown beforehand: 
The user executes 

 the motion by 
him/herself 

The user makes 
the robot execute 

the motion 

Examples:  
• Motion retargeting 

Examples:  
• Motion editor  
• Kinestetic demonstration 

 (teaching and playback) 
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Commercial motion editors 

 Movement defined 
by keyframes 

 The user needs to 
set the position of 
each joint at each 
keyframe. 

 Time consuming and 
unintuitive  



Keyframe based motion description 

time 

Interpolations Keyframe 2 Keyframe 2 Keyframe 1 

動作表現 = 一連の基本姿勢 

 Motion is a sequence of 
“important postures” 
defined for certain times 

 The postures at intermediate 
in between are obtained by 
interpolation 



Touch as a communication mean 

Human - human motion teaching 

Human – robot 
motion teaching 



Tactile protocol 
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The teacher sees the 
robot and has 

a desired modification 

Interpretation of the 
instruction meaning 

and motion modification 

+ 
The teacher 

Intuitively  provides 
touch instruction 

Passive movements 

Active, arbitrary  
movement  
of the robot’s 
motors 

Passive movements determined by  
the joint compliance 
 

Lead-through 
teaching 

Kinestetic 
demonstration 



Interpretation of tactile instructions 
13 

Context dependence 

Same touch, different meanings 

depending on the robot’s 

posture 

Robot 
 standing 

Robot 
 squatting 

User dependence 

Same touch, different 

meanings 

depending on the user 



Interpretation:possible approaches 

1) Fixed protocol 

Desired motion 
modification 

教えたい 
動作調整 

あらかじめ決められたプロトコル 

Conversion to 
required touch instructions 

決められた 
命令に変化 

Touch 
instruction 

接触 
教示 

Intetrpretation according 
to the mapping 

プロトコル 
に基づく解釈 

Motion 
modification 

動作 
の調整 

ユーザが考える
ことが必要 

User’s 
mental effort 

2) Human interpretation modeling 人間の学習者のモデル化に基づくプロトコル 
 

Extraction of a model 
of human learners’ 

interpretation 
人間の 
モデル化 

Desired motion 
modification 

教えたい 
動作調整 

Intuitively  provided 
touch instruction 

直感的な 
接触教示 

Interpretation of the 
instruction meaning 

教示者の 
意図推定 

Motion 
modification 

動作 
の調整 



Motion development 
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Input Output 

Online update 
of the protocol 

Select a keyframe 

Touch the robot 

Correct interpretation 
 

Wrong interpretation 
 

Observe the motion 

Provide correct interpretation 



Teaching a new instruction 
16 



Learning algorithm 

Learning by Kernel regression:    

Posture change for current 
sensory input 

Posture change of 
i-th example 

i-th example 
sensory input 

Current sensory 
input 

Number 
of 

examples 

Kernel 
function 

 non-parametric (instance based)  
local learning 

 

Input 
Touch instruction + context 

Touch sensor values: 
A vector of  continuous 
values in the range [0,1] 

-Posture:  
Joint potentiometer values 
- Orientation: 
Accelerometer values 

 
 
 

A modification of the posture  assumed by the robot at the time it is touched 

Output 

Motion modification 
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Kernel function 

Touch sensor 
data 

Sensory information 
except touch sensors 

3 

1 

1 Stronger push → bigger effect 

2 

Closer context → stronger  
contribution to the output  

2 

Only a subset of sensors  
is pushed → ignore 

3 

Set of sensors 
pressed 

18 



Experimental setup 
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Task: 
Development of 
algorithm exercise 
 

M3 Neony: body covered with 90 optical 
tactile sensors 

Subjects: 
• engineering 

students  
• age 23-25 
• 3 males, 1 

female 
• no knowledge 

on TbT 
 



Results 
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Meanings Taught 

Instructions Used 

The system correctly 

learns how to interpret 

the touches and the 

user needs to teach less 

and less the meaning of 

the touches 

Touch number 

C
o

rr
ec

te
d

 r
es

p
o

n
se

s 
ra

ti
o

 

 On average 
 96 instructions (min 60 – max 157) 

 867 touches (min 436 – max 2332) 

 6 hours (min 4:20 – max 7:30) 

 

 



Data analysis 
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 Study how humans use touch to 
communicate 

 
 

Mapping 

Mapping 

 Study the properties of the mapping 

Design policies for interpretation algorithms 



Mapping linearity 
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 Linear (ridge) regression generalizes very poorly 

 Errors often 2 orders of magnitude w.r.t. Kernel 
regression 

 Regression trees can improve the situation, 
 exploiting the context 

 

 

 

- Posture 
(potentiometers)  

- Orientation 
(accelerometers) 

P8>θ8 

P2>θ2 P5>θ5 

O2>ɸ2 

P9>θ9 

P1>P1 

P3>θ3 

Context that mostly influence the 
mapping: 
rotation of the joints near the torso 

1 



Mapping structure 
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 Generally mutual information 
is high for sensors and motors 
of the same limb 

Torso 

Head 
Right 
arm 

Left 
arm 

Right 
leg 

Left 
leg 

H
ea

d
 

R
ig

h
t 

ar
m

 
Le

ft
 

ar
m

 

R
ig

h
t 

le
g 

Le
ft

 
le

g 

Motors 

Se
n

so
rs

 

Mapping algorithms  
• can assume a higher 

probability for motors of the 
same limb 

• must allow inter-limb 
associations 
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 For high level behaviors, 

ex: push the head = squat

high mutual information 

between different parts 



Mapping sparsity 
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Very high Gini index  
for inputs and outputs 

Subject 1 Subject 2 Subject 3 Subject 4 

0.96 0.90 0.98 0.92 

0.82 0.78 0.87 0.70 

Mapping 
Given the couples (          ) for 1≤i ≤e  
 predict the result           from  

, ~ 

Friedman, Hastie, Tibshirani, Regularization paths for generalized linear models via 

coordinate descent, J. of Statistical Software, 33(1), 2010. 

with rows  

chosen by Elastic net regularization  

~ 

P
re

d
ic

ti
o

n
 e

rr
o

r 
Increasing sparsity enforcement α 

~ 

The mapping between inputs                 and outputs  
    can be improved enforcing sparsity 
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Motion Primitives in Motor responses  
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H
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g 

Head 
Right 
arm 
Left 
arm 

Right 
leg 

Left 
leg 

Motion responses (“edits of a single posture”) 

Motion primitives 

Keyframes (“whole motion”) 

Motion primitives 

dimensions 

av
er

ag
e 

 
p
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d
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o
r 

Previous motor responses 
All motor responses 
Previous keyframes 

“Keyframe-derived” motion primitives  
and “motor response-derived” motion 
primitives are very similar 

“We can use “seen keyframes” for  
improving the mapping  
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Keyframes selection 
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~ 

Mapping 

Projection on  
span <F1,..,Fk> 

Initial 
prediction 

~ 

chosen by minimizing 

H. Lee, A. Battle, R. Raina, and A. Y. Ng.  Efficient sparse coding algorithms. NIPS, 2007. 

P
re

d
ic

ti
o

n
 e

rr
o

r 

~ 

Increasing sparsity enforcement 

 Projecting on a subset of 
keyframes (instead of the 
whole) can further 
improve the performance  

5 



Kernel 
regression 

Kernel 
regression 

Kernel 
regression 

User dependency 
27 

User 3 database User 1 database User 2 database 

Distance between user pairs 

Visualization through MDS 



Different levels of abstraction 

high-level / symbolic 
(e.g. “touch right knee” = 
“move right leg forward”) 

“Arbitrary” association 
between sensors and close 
joints 

Imagine to have elastic 
joints (passive / pin and 
drag model) 

28 

Different people tend to associate different 
“abstraction levels” to touch instructions 

6 



Active - passive 
29 

Pa
ss

iv
e 

m
o

ve
m

e
n

ts
 

User 

=passive =active 
Users distribute over 
the whole range from    
“passive” convention to 
“active” convention 7 



TbT: A conceptual schema 
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Perceived 
context Intended 

motion 
response 

Physical 
context  

Provided 
touch 

Way of teaching 
(abstraction level) 

Human 
brain 

Physical  
world 

Task 

Motion 
(frames) 

Responses 
taught 



TbT analysis: Conclusions 
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 Context and user dependence 

 Motion responses involve with high probability 
joints of the touched limb 

 Need the possibility of modeling exceptions and inter-
limb mappings 

 Can assume sparse movements have high probability 

 Motion responses can be composed by motor 
primitives 

 With good probability  they can be derived from 
combining few frames 

 

 

 

 



Predictability of CPG’s behavior: 
Oscillator type 

Plenty of oscillators types: 
•Sinusoidal (Morimoto et al. 06) 
•Hopf/adaptive Hopf(Righetti et al. 06) 
•Rayleigh (De Pina Filho et al. 05) 
•Van der Pol (Veskos et al. 05) 
•FitzHugh-Nagumo (Collins et al 94) 
•Hopfield (Mathayomchan et al 02) 
•Matsuoka (Inada et al 03, Inoue et al 04) 
•… 

異なる 
初期状態 

根本的に 
異なる行動 



Generality of generable movements 
CPG network structure 

M 

M 

M 

M 

Full connections 

M 

M 

M 

M 

Homologous joints 

 
 

 
 
 
 

Legend 

M 

Oscillator 

  

Connection 
Between 
oscillators 

Body part 

Actuator 

Control of 
an actuator  
by an  
oscillator 

M M 

M M 

M M 

M M 

Star 

M M 

M M 

M M 

M M 

Tree 

M M M M 

Chain 

• Literature presents 
a great variety of 
network structures 

• They can be 
summarized in 5 
types 

• The structure 
determines the 
types of motions 
that can be 
generated 

CPG[神経振動子] 
の相互接続によって 
出力の一般性が増す 



System setup 

Neuron model: 
Hopf oscillator 

Configuration: 
Star  

(“clock” oscillator) 

Collision prevention: 
Enclosing convex  
Polyhedra  

実体より大きい 
凸多面体で近似する 



Motion examples 



Research topic 1 
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 Distinguish between different type of 
touches 

Self – User – Environment touch 

 Probabilistic model of the self – 
environment touches 

Identification of user’s touches as highly 
improbable touches due to other reasons  
 

 



Questions ? 

End of part 1 



Part 2 
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 Klinokinesis based control 



Klinokinesis 

“if conditions are improving, 
keep on in the same direction, 
otherwise try a new direction” 
Dusenbery DB, Performance of basic   strategies for 
following gradients in two dimensions, 

Journal of Theoretical Biology, 2001 

            

flagella 

CW rotation 

Random direction  

change 

flagella 

CCW rotation 

straight 

movement 

http://www.youtube.com/watch?v=EZ5ATNJfuCs 



A minimalistic behavioral rule 

“if conditions are improving, 

keep on in the same direction, 

otherwise try a new direction” 

Next motor 

command 

Previous motor 

command 

A new random 

motor command 

If conditions  

are improving 

 

Tr
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n
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High  
Low  

Good  

Low  

Good  

High  

E 



Perturbation level  
 [ log(β/α)] 
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w
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deviation from optimal heading 

P
ro

b
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d
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n
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Performance increase by random perturbations 

too small good too big start 

target 

start 

target 

start 

target 

angleDistrib.wmv


Analysis of the effect of  

optimal 

direction 

direction  

taken 
 

Probability distribution:  

a Fredholm eq. of the II type 

No closed form! 

Markov Chain Model  

v 

=-/2 

=0 

= /2 

= 



 tradeoff 

Long-term behavior 

  

Stationary distribution: 

Derivative w.r.t v 

>0 for states  

corresponding  

to -/2<</2  
 

<0 for states 

corresponding 

to -/2<</2  
 

High 

v () 

Short-term behavior 
Difference equations 

Convergence to the stationary distribution 

sped up by increasing v  

Low 

v () 

Shorter time for 

achieving high 

probability of good 

directions 

Lower probabilities 

for bad directions  

at t 



Directions probability, t=0 

- -/2 0 /2  - -/2 0 /2  

High  

v=1/2 

Low  

v=1/64 



Directions probability, t=1 

- -/2 0 /2  - -/2 0 /2  

High  

v=1/2 

Low  

v=1/64 



Directions probability, t=10 

- -/2 0 /2  - -/2 0 /2  

High  

v=1/2 

Low  

v=1/64 



Directions probability, t=104 

- -/2 0 /2  - -/2 0 /2  

High  

v=1/2 

Low  

v=1/64 



Choosing  

Low  (v=1/64) 
High  (v=1/2) 

- -/2 0 /2  -3/4 -/4 /4 3/4 

Medium  (v=1/4) t=10 

 The optimal value for  depends not only on the problem, but 

also on the time available for the task 

 Whatever >0 is sufficient to have a distribution with a peak in 

the optimal direction 



Features of MBR (Minimalistic Behavioral Rule) 

 Extremely simple: 
 A single parameter  with low sensitivity 

 No model required 

 Minimal memory requirements 

 A single binary input 

 Works with a wide variety  

of systems 
 Systems with non-linearities 

 System with delays 

 Systems with time-variant dynamics 

 Works in n-dimensional spaces 
 

Probability of the directions 

taken in a 3D space 

Nonlinear dynamics 



Non-linear system 
51 

N
u

m
b

er
 o

f 
p

ar
ti

cl
es

 

traveled distance 

System nonlinearites 

u1 u2 

f(u) 



Delays 
Tr
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Low pass effect () 

s = 10-3 

N = 104 

Low-pass system  
dynamics 
 



Dead time 

Dead time in the  
system dynamics 

Dead time system dynamics 
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Dead time (d) [time steps] 

s = 10-3 

N = 104 



High dimensional spaces 
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Space dimensions (p) 

p 

Tr
av

el
ed

 d
is

ta
n

ce
 

p 



Applications – mobile robot reaching 

Task: reach a red object 

Hardware:  

  - Real World Interface B12 

      (Synchro Drive) 

  - 640×480 Logitech webcam  

      on an omnidirectional mirror 



Navigation 



Advantages 

 No robot model 
required 

 Minimal 
computational 
requirements 

 Limited input 
information 
required 

 Robustness to 
noisy information 

Distance [cm] 

N
u

m
b

e
r 

o
f 

re
d

 p
ix

e
ls

 



Robustness to hardware damage 

 No model of the robot 

 The robot can change 
during runtime! 

 
Robot: simulated mobile robot with two 
independent wheels and an omnidirectional 
camera 

Task: reach a red hemisphere 
Sensory information: number of red pixels 
in the camera image 

Change in the size  
of  a wheel 

Uncontrollability of  
a wheel 

Change of the  
rotation axis of a wheel 

Obscuration of 20% 
of the camera 

4 simulated hardware faults 



Results 

 The robot is able to 
reach the target in all 
the cases 

 An optimal ratio 
between the noise 
and the signal exists  

 This ratio depends on 
the hardware and 
environment 
conditions η 

P
e
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o
rm

a
n

c
e
 



Movement in a parameter space 
60 



Applications – humanoid robot 

MBR used to control 

the parameters of a CPG 

network  

Task: maximize the crawling 

          speed 



Applications – pneumatic robot arm 

Hardware: 

 - pnematic robot arm 

    17 actuators, 7DOFs 

 - 2x FL2-08S2 camera 

   with EMVL-316 CCTV lens 

F
re

q
u
e
n
c
y
 

cos() 

Task: reach 3 virtual 

          targets 

Directions close to the optimal are taken 

            with the highest probability  



Questions ? 

Thank you 


