INTERPRETATION OF SPONTANEOUSLY PROVIDED TACTILE INSTRUCTIONS

Fabio Dalla Libera,

JSPS Postdoctoral Fellow at Ishiguro Laboratory, Osaka University, Japan

2013 Feb 22

Micheletto laboratory

Outline

Teaching by touching

- Tactile instructions as a communication mean
 - Difficulties
- Proof of concept implementation
 - Experiment
- Analysis of the data collected
- Design policies for building touch interpretation algorithms
- Klinokinesis based control
- Analysis of natural looking movements

Part 1

Teaching by touching

Why humanoids?

- They can use tools and infrastructures already available for humans
- They can convey non-verbal information: ease communication
- They can become a model for understanding humans

Difficulties

Transfer of knowledge

1. Task known beforehand:

Programmer's knowledge included in the control algorithms

Examples:

- Visual servoing
- ZMP
- CPG connections
- Design of the state/action space

Transfer of knowledge

2. Task **partially known** beforehand:

Transfer of knowledge

3. Task **unknown** beforehand:

The user executes the motion by him/herself

Examples:

1

Motion retargeting

The user makes the robot execute the motion

Examples:

- Motion editor
- Kinestetic demonstration (teaching and playback)

Commercial motion editors

 Movement defined by keyframes
 The user needs to set the position of

each joint at each keyframe.

Time consuming and unintuitive

Keyframe based motion description

- Motion is a sequence of "important postures" defined for certain times
- The postures at intermediate in between are obtained by interpolation

Touch as a communication mean

Human - human motion teaching

Tactile protocol

Interpretation of tactile instructions

Interpretation:possible approaches

1) Fixed protocol あらかじめ決められたプロトコル

2) Human interpretation modeling 人間の学習者のモデル化に基づくプロトコル

Motion development

Teaching a new instruction

Learning algorithm

Kernel function

Experimental setup

Subjects:

- engineering students
- age 23-25
- 3 males, 1 female
- no knowledge on TbT

Task: Development of algorithm exercise

Results

On average

- 96 instructions (min 60 max 157)
- 867 touches (min 436 max 2332)
- 6 hours (min 4:20 max 7:30)

The system correctly learns how to interpret the touches and the user needs to teach less and less the meaning of the touches

Data analysis

21

Study how humans use touch to communicate

Study the properties of the mapping Design policies for interpretation algorithms

Mapping linearity

- 22
- Linear (ridge) regression generalizes very poorly
 - Errors often 2 orders of magnitude w.r.t. Kernel regression
- Regression trees can improve the situation, exploiting the context

Mapping structure

$$\hat{I}_{s,m} = \sum_{\sigma} \sum_{\mu} p_{s,m}(\sigma,\mu) \log_2 \left(\frac{p_{s,m}(\sigma,\mu)}{p_s(\sigma)p_m(\mu)} \right)$$
$$I_{s,m} = \frac{\hat{I}_{s,m}}{\sqrt{H_s H_m}}$$
$$\square \quad \text{Generally mutual information} \\ \text{ is high for sensors and motors} \\ \text{ of the same limb}$$

For high level behaviors,

ex: push the head = squat

high mutual information between different parts

Mapping algorithms

can assume a higher probability for motors of the same limb

2

 must allow inter-limb associations

Mapping sparsity

24

Subject 2 Subject 3 Subject 4 Subject 1 Very high Gini index $avg_{1 < i < E} < G(I_i) > 0.96$ 0.90 0.98 0.92 for inputs and outputs $avg_{1 \le i \le E} < G(M_i) > 0.82$ 0.78 0.87 0.70 Given the couples (\overline{I}_i, M_i) for $1 \le i \le e$ Mapping predict the result M_{e+1} from \overline{I}_{e+1} 0.992 error $\varepsilon_e = \left\| M_{e+1} - \tilde{M}_{e+1} \right\|$ $\widetilde{M}_{e+1} = B_e \begin{vmatrix} 1 \\ \overline{I}_{e+1} \end{vmatrix}$ with rows $B_e^{(k)} = \begin{bmatrix} b_e^{(k)} & \beta_e^{(k)} \end{bmatrix}$ 0.99 Prediction (986'0 (986'0 (986'0 (986'0 (986'0 (986'0 (986') (986'0 (986') (9 chosen by Elastic net regularization $\frac{1}{2N}\sum_{i=1}^{1} \left(M_i^{(k)} - b_e^{(k)} - \beta_e^{(k)} \bar{I}_i \right)^2 + \lambda \left[(1 - \textcircled{0}) \frac{1}{2} \|\beta_e^k\|_2^2 + \textcircled{0} \|\beta_e^k\|_1 \right]$ 0.982 0.1 0.2 0.3 07 0.9 Friedman, Hastie, Tibshirani, Regularization paths for generalized linear models via Increasing sparsity enforcement α coordinate descent, J. of Statistical Software, 33(1), 2010.

3

The mapping between inputs $\overline{I}_i \in \mathbb{R}^n$ and outputs $M_i \in \mathbb{R}^m$ can be improved enforcing sparsity

Motion Primitives in Motor responses

Keyframes selection

User dependency

Different levels of abstraction

-5

-15

-10

Different people tend to associate different "abstraction levels" to touch instructions

O.

5

10

15

Active - passive

TbT: A conceptual schema

Physical world

30

TbT analysis: Conclusions

- 31
- Context and user dependence
- Motion responses involve with high probability joints of the touched limb
 - Need the possibility of modeling exceptions and interlimb mappings
 - Can assume sparse movements have high probability
- Motion responses can be composed by motor primitives
 - With good probability they can be derived from combining few frames

Predictability of CPG's behavior: Oscillator type

Generality of generable movements CPG network structure

- Literature presents
 a great variety of
 network structures
- They can be summarized in 5 types
- The structure determines the types of motions that can be generated

CPG[神経振動子] の相互接続によって 出力の一般性が増す

System setup

Neuron model: *Hopf oscillator*

$$\dot{x_i} = \gamma_i (\mu_i - r_i^2) x_i - \omega_i y_i + \sum_j W_{ij} x_j$$
$$\dot{y_i} = \gamma_i (\mu_i - r_i^2) y_i - \omega_i x_i$$

 $r_i = \sqrt{x_i^2 + y_i^2}$

Configuration: Star ("clock" oscillator)

Collision prevention: Enclosing convex Polyhedra

> 実体より大きい 凸多面体で近似する

Motion examples

Research topic 1

Distinguish between different type of touches

- Self User Environment touch
- Probabilistic model of the self environment touches
 - Identification of user's touches as highly improbable touches due to other reasons

Questions ?

End of part 1

Part 2

Klinokinesis based control

Klinokinesis

"if conditions are improving, keep on in the same direction, otherwise try a new direction"

Dusenbery DB, Performance of basic strategies for following gradients in two dimensions,

Journal of Theoretical Biology, 2001

http://www.youtube.com/watch?v=EZ5ATNJfuCs

A minimalistic behavioral rule

Performance increase by random perturbations

Analysis of the effect of η

η tradeoff

Long-term behavior

Short-term behavior

Directions probability, t=0

Low η v=1/64

High η v=1/2

Directions probability, t=1

Low η v=1/64

High η v=1/2

Directions probability, t=10

 $a_{n} = \frac{1}{-\pi} - \pi/2 = 0$

Low η v=1/64 **High** η v=1/2

Directions probability, t=10⁴

0.05 $-\pi -\pi/2 \quad 0 \quad \pi/2 \quad \pi$

Low η v=1/64

Choosing η

- The optimal value for η depends not only on the problem, but also on the time available for the task
- Whatever η>0 is sufficient to have a distribution with a peak in the optimal direction

Features of MBR (Minimalistic Behavioral Rule)

Extremely simple:

- A single parameter η with low sensitivity
- No model required
- Minimal memory requirements
- A single binary input

Works with a wide variety of systems

- Systems with non-linearities
- System with delays
- Systems with time-variant dynamics
- Works in n-dimensional spaces

taken in a 3D space

Non-linear system

Delays

Low-pass system dynamics

$$\begin{aligned} v_t &= (1 - 10^{-\rho})v_{t-1} + 10^{-\rho}u_t \\ x_{t+1} &= x_t + v_t \end{aligned}$$

Dead time

Dead time in the system dynamics

Dead time system dynamics $x_{t+1} = x_t + u_{t-d}$

High dimensional spaces

$$\begin{bmatrix} x_0 = [-1, 0, \dots, 0]^T \in \mathbb{R}^p \\ x_{t+1} = x_t + s \cdot u_t \end{bmatrix}$$

Space dimensions (p)

Applications – mobile robot reaching

Task: reach a red object

Hardware:

- Real World Interface B12 (Synchro Drive)
- 640 × 480 Logitech webcam on an omnidirectional mirror

Navigation

Advantages

- No robot model required
- Minimal computational requirements
- Limited input information required
- Robustness to noisy information

Robustness to hardware damage

No model of the robot The robot can change during runtime!

Robot: simulated mobile robot with two independent wheels and an omnidirectional camera

Task: reach a red hemisphere Sensory information: number of red pixels in the camera image

4 simulated hardware faults

Change in the size of a wheel

Uncontrollability of a wheel

Change of the rotation axis of a wheel

Obscuration of 20% of the camera

Results

- The robot is able to reach the target in all the cases
- An optimal ratio
 between the noise
 and the signal exists
- This ratio depends on the hardware and environment conditions

Movement in a parameter space

Applications – humanoid robot

MBR used to control the parameters of a CPG network

Task: maximize the crawling speed

Applications – pneumatic robot arm

Hardware:

pnematic robot arm
17 actuators, 7DOFs
2x FL2-08S2 camera
with EMVL-316 CCTV lens

Task: reach 3 virtual targets

Questions ?

Thank you