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Part 1

Teaching by touching




Why humanoids?

o1 They can use
tools and
infrastructures
already available
for humans

o1 They can convey
non-verbal
information: ease
communication

o1 They can become
a model for
understanding
humans




Difficulties

-1 Developing motions for
humanoids with high number of
DOFs (=20) is

difficult

Highl
Continuous Continuous Time gnty

state space action space | continuous

dimensional
spaces
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* Automatic learning is
often impossible




Transfer of knowledge

Task known beforehand:

Programmer’s
knowledge included
in the control
algorithms

Programmer's
knowledge

Examples:

* Visual servoing

e ZMP

* CPG connections

* Design of the state/action space



Transfer of knowledge

2. Task partially known beforehand:

T Examples:
- * Teaching by watching

— * Mimesis model

Programmer's

knowledge S~ _—

Selection
User’s and composition

Task knowledge




Transfer of knowledge

3. Task unknown beforehand:

Examples:

 Motion editor

e Kinestetic demonstration
(teaching and playback)

Examples:
* Motion retargeting



Commercial motion editors

example —RobovieMaker for ¥YS-RC003- [FHULOE—a] *
I7E REE BEQ A-AE -y BEQ JOIIIMOREDR ANTH

B E| €« 9 [bruRwon N v msowoe | b ou | A B @ 3ﬁ1ﬂﬂ%ﬁ _ . D Movement defined
by keyframes

" - el 0 The user needs to
| '; | set the position of

each joint at each

keyframe.
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gll

-1 Time consuming and
unintuitive




Keyframe based motion description

Motion is a sequence of
“important postures”
defined for certain times

The postures at intermediate
in between are obtained by
interpolation

Interpolations




Touch as a communication mean
]

Human - human motion teaching

Human — robot
motion teaching



Tactile protocol

2 The teacher sees the
robot and has

@ a desired modification

The teacher
\ | Intuitively provides
touch instruction

Interpretation of the
instruction meaning
and motion modification




Interpretation of tactile instructions

Context dependence User dependence

Robot
standing Q




Interpretation:possible approaches
]

1) Fixed protocol HoMUHRHLNI=TORIIL

| Desired motion Conversion to = Touch " Intetrpretation according™ Motion
modification required touch instructions instruction to the mapping modification

AT User’s 5kf63*}_f: Pl Jokaj E{E
=[E melcE T~ - SCER T HEES
FIEFRE mental effort :L—*f‘;‘bi‘%;ét #R [CEDER DHH
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Desired motion = Intuitively provided Interpretation of the Motion
modification touch instruction instruction meaning modification
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HHE A EXHETE DEE:
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interpretation :E7_'\\)l/“:,




Motion development
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Correct interpretation



Teaching a new instruction




Learning algorithm

Input

Touch instruction + context Learning by Kernel regression:

non-parametric (instance based)

Touch sensor values: -Posture: .
A vector of continuous Joint potentiometer values Iocal Iea rni ng
values in the range [0,1] | - Orientation:
= Current sensor
Accelerometer values NUmber o y i-th example
o of — — sensory input

examples o F/

M, = Wl I;)M;
1=1

Output Posture change for current Kernel Posture change of
Motion modification sensory input function i-th example

A modification of the posture assumed by the robot at the time it is touched




Kernel function

18 |
O@ Touch sensor Zf ds:s € W, A s ¢ v,
data Set of sensors
_ ﬁ/—/
w(I*, L;) = Mo I_(S)/I_.(S)\l/ pressed
A=k - otherwise

1+\/| [.—1,

Sensory information
except touch sensors

2 7(s)
2+Zs:€\l’i (I* )23/

Stronger push = bigger effect

Closer context - stronger
contribution to the output

Only a subset of sensors
is pushed - ignore




Experimental setup

1 screw 6 photointerruptor
2 spacer 7 photoemitter

3 plastic plate 8 phototransistor
4 white disc 9 robot's frame

5 polyurethane foam

M3 Neony: body covered with 90 optical
tactile sensors

Subjects:

* engineering
students
age 23-25
3 males, 1
female
no knowledge
on ThT

Task:

Development of
algorithm exercise




Results

o On average
96 instructions (min 60 — max 157)
867 touches (min 436 — max 2332)
6 hours (min 4:20 — max 7:30)
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The system correctly
learns how to interpret
the touches and the
user needs to teach less
and less the meaning of
the touches




Data analysis

Study how humans use touch to
communicate

Study the properties of the mapping
Design policies for interpretation algorithms




Mapping linearity

Linear (ridge) regression generalizes very poorly

Errors often 2 orders of magnitude w.r.t. Kernel

regression

Regression trees can improve the situation,

exploiting the context

P.>64 _ Post
— S 0s ure'
P,>0, P->0. (potentiometers)
£ - Orientation

P3>8, Pa Ps>B4 N (accelerometers)

Og>¢; P1>Pl

(1)

Context that mostly influence the

mapping:
rotation of the joints near the torso
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Right knee
pitch

Right knee
pitch 2

Right ankle
roll

Right ankle
pitch

Left knee
pitch

Left knee
pitch 2

Left ankle
roll

Left ankle
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Left hip
yaw hould
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pitch elbow
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Left hip
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Left

shoulder

pitch
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Mapping structure
23

r Psm\T, [4
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Head | ‘@ m - Ps Pm (H
Right oo S L m
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R o o Generally mutual information
| - s42.|HandtopT . R
OF @rm | suvssns - is high for sensors and motors
C— s18.rHipF .
& B of the same limb
Right : )
leg |5 o For high level behaviors,
233 :r‘tf;:jg . eX:
high mutual information
between different parts

Mapping algorithms @

* can assume a higher

probability for motors of the
£ oo |[= .
e \ 1 » same limb
N~ * must allow inter-limb

associations




Mapping sparsity

Very high Gini index
for inputs and outputs

~ 1
M.11 = B, [ oo ] with rows Be(k) = [be(k) ﬁe(k)]

chosen by Elastic net regularization
1 < 2 1
s 2 (M =80 = BOL) 4 A [(1 ~@58:13 +@|ﬁfn1}
i=1

Friedman, Hastie, Tibshirani, Regularization paths for generalized linear models via
coordinate descent, J. of Statistical Software, 33(1), 2010.

avg, .y < G(I;) > 0.96
avg,..p < G(M;) > 0.82

0.90 0.98 0.92
0.78 0.87 0.70

Given the couples (1; M;) for 1<i <e
predict the result M. from ..
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can be improved enforcing sparsity
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Motion Primitives in Motor responses

=

Motion responses (“edits of a single posture”)
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[ Motion primitives J

Keyframes (“whole motion”)

Motion primitives

“Keyframe-derived” motion primitives
and “motor response-derived” motion
primitives are very similar

“We can use “seen keyframes” for
improving the mapping

S0

Previous motor responses
All motor responses

.
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dimensions | @




Prediction error

Keyframes selection

Mapping
Initial F Projection on )
~(  prediction 2 BFpey1/=/ span<Fy,.,F> T
Pe+1 = Be |: _1 ] Me+1 :F€+1p€+l
Ie-l—l

Lesi=[F ... Fx| [chosen by minimizing

‘|pe+1 _ Fe—l—lﬂe—l—l”% _I_@)HPB—HHI

H. Lee, A. Battle, R. Raina, and A. Y. Ng. Efficient sparse coding algorithms. NIPS, 2007.

R :HMeH—MGH 110 Projecting on a subset of
005L N _____________ _____________ ________ 2 | keyframes (instead of the
ol /| whole) can further
oo .. |l improve the performance

O Increasing sparsity enforcement ¥V @



Tiear 1 datanaea
).

User dependency

TN

Kernel
regression

T

Kernel
regression

Kernel
regression

o

.

Distance between user pairs H dist(uy,uz) = — log (

MT;T'U,]_ : Mi,u2
avg :
i A\ MM ||| M ||

-~

Visualization through MDS




Different levels of abstraction
28 |

high-level / symbolic Imagine to have elastic
(e.g. “touch right knee” = joints (passive / pin and
“move right leg forward”) drag model)

<_:.:E

-5
“Arbitrary” association
between sensors and close
_1ok joints
—15 Kk < i . i L i
—-15 =10 -5 a 5 10 15

Different people tend to associate different
“abstraction levels” to touch instructions




Active - passive
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Users distribute over
the whole range from
“passive” convention to

“« . ” . '
active™ convention @
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TbT: A conceptual schema

Way of teaching

Perceived
(abstraction level)
Intended context

motion
SoPon=s \ %/

Responses Provided Physical
taught touch context

Physical
world

Motion
(frames)



TbT analysis: Conclusions

Context and user dependence
Motion responses involve with high probability
joints of the touched limb

Need the possibility of modeling exceptions and inter-
limb mappings

Can assume sparse movements have high probability
Motion responses can be composed by motor
primitives

With good probability they can be derived from

combining few frames



Predictability of CPG’s behavior:
Oscillator type

Plenty of oscillators types:
«Sinusoidal (Morimoto et al. 06)
*Hopf/adaptive Hopf(Righetti et al. 06)

*Rayleigh (De Pina Filho et al. 05)

*Van der Pol (Veskos et al. 05)
*FitzHugh-Nagumo (Collins et al 94)
*Hopfield (Mathayomchan et al 02)
eMatsuoka (/Inada et al 03, Inoue et al 04)

u = [0.0999,0.5046, 0.7471, —0.7059, —0.9883,0.9757]7

2
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Generality of generable movements
CPG network structure

Chain
’ , , , * Literature presents
G v | v | Jel _ a great variety of
@ Oscillator
Tree network structures
p ™ Actuator o They can be
;‘@ — Connection summarized in 5
Between
/< oscillators types
Wik B  The strgcture
wo an actuator determines the
- by an types of motions
e oscillator
L that can be
- [:] Body part generated
- CPG[HEIRENF]
=] -
Full connectlons Homologous joints 0)1:51:_"*%%”‘(“&:0—(

HAD—RRIENET

D- S R N -
s oo



System setup

Neuron model: Configuration:

Hopf oscillator Star o T

B = i — 1)@ — wiys + Z Wijx, (“clock” oscillator)

J ns

Y = %‘(Mz‘ — 7”@2)% — Wil

o /
R

(2.

Collision prevention:
Enclosing convex
Polyhedra

BAELYKREL
MZEATERTS




Motion examples




Research topic 1

Distinguish between different type of
touches

Self — User — Environment touch
Probabilistic model of the self —
environment touches

ldentification of user’s touches as highly
improbable touches due to other reasons



Questions ?
]

End of part 1




Part 2

39|
1 Klinokinesis based control




Klinokinesis

“if conditions are improving,
keep on in the same direction,
otherwise try a new direction”

Dusenbery DB, Performance of basic strategies for
following gradients in two dimensions,

Journal of Theoretical Biology, 2001

&

v ~

/flagella N ( flagella )
CCW I’Ota’[ion CcW rO'[ation http://www.youtube.com/watch?v=EZ5ATNJfuCs

-
/ —
Random direction &
change

) k@&e&@

straight
__movement




A minimalistic behavioral rule

Previous motor If conditions
command are improving . B . .
oo — “if conditions are improving,
| uf) if AE, >0 keep on in the same direction,
MO : alylrrar
t+1 otherwise try a new direction

random selection otherwise

Next motor |\
command A new random
motor command

T T T T T

o
u
[s2]

/ s Good n
7 2! |
Low n)

L g~

High 1 A i—aame— >

Travel efficiency

VE

06 I 1 L | I 1 1
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 T]




Performance increase by random perturbations
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angleDistrib.wmv

Analysis of the effect of n

]
d':elitlon / Markov Chain Model \
j@f e 0= n/2
optimal b
direction
0, +((—1.1)) if AE >0
Ori1 = | N,
U(—m,T) otherwise :@ _____ - ;
rProbability distribution: A - -
a Fredholm eq. of the Il type 7®€
/2 1[5, p(o)d
p(0) = K (0, 0)p(¢)do + o 0N
—7/2 2T
1 /2 1
= g+ [ K0 = on@)as
No closed form!




n tradeoft

Long-term behavior

Stationary distribution:

24(N+4)v e N . 3N
NT8LEN TN +060) ) ifi=g3Vi=+1
) 48 448i(N+1)-12N-ON? .. N L3N
Pi.oo = N(S+6N+NZ+000) ifTrl<is=f
o otherwise

N(8+6N+N=+96v)

Derivative w.r.t

::::::

, .-‘ ’9 <0 for states
@ corresponding
5@0‘ to -n/2<0<m/2

>0 for states
corresponding-o
to -nt/2<0<m/2

Short-term behavior

Difference equations

Dit+1 =

vpis1t + g ifi= %
(1 —2v)pit +vpit1t+ 9 ifi= % +1
(1 =20)pi,e +o(pitis +pim10) +g if F+2<i<3F —1
(1 —=2v)p; ¢+ +vpi—1.t +g ifi= BT
vpi—1,t + 4 ifi= %_Fl
Lg otherwise

Convergence to the stationary distribution
sped up by increasing

\ \
I’ N

Lower probabilities
for bad directions

at t—>00

Shorter time for
achieving high
probability of good
directions




Directions probability, t=0
N

-t -7/2 0 /2 T -t -m/2 0 /2 T

Low n High n
v=1/64 v=1/2




Directions probability, t=1
-1

-t -7/2 0 /2 T -t -m/2 0 /2 T

Low n High n
v=1/64 v=1/2




Directions probability, t=10




Directions probability, t=10%




Choosing n

0.15 . | | | | !
B ST Medium n (V:1/4)
0.125} | D R T : : —
: R i T f
0.1F | |
a- 0.075F+ E ~
0.05 2/ _
=/
0.025 : “ .
| | | T R S e

0

-TT -3ldn -mw/2 -1t/4 0 n/4 /2 3/4rn T

The optimal value for 1 depends not only on the problem, but
also on the time available for the task

Whatever n>0 is sufficient to have a distribution with a peak in
the optimal direction



Features of MBR (Minimalistic Behavioral Rule)

Extremely simple: = { RS

random selection otherwise

A single parameter 1 with low sensitivity |
No model required 0 e, e

Minimal memory requirements ;! . TR
A single binary input e
. . . Nonlinear dynamics
Works with a wide variety o
of systems |

Systems with non-linearities
System with delays

Systems with time-variant dynamics

Works in n-dimensional spaces

Probability of the directions
taken in a 3D space



Non-linear system
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Delays

e N
Low-pass system vy = (1 _ 10_’9)%_1 + 107 uy
dynamics

Tir1 = X + Uy

16

Traveled distance

Low pass effect ()



Dead time

Dead time in the
system dynamics

- Dead time system dynamics
Tia1l = Tt + Ut—q

|

Traveled distance

80 100 120 140 160 180

Dead time (d) [time steps]



High dimensional spaces
N

Space dimensions (p)

xo =[—1,0,...,0]" € R?
Ti+1 =Tt + S Ut

0.6

0.55

05

0.45

0.4

Traveled distance

0.35

] l J [ | I ] | ]
0.3
40 45 p




Applications — mobile robot reaching

Task: reach a red object

Hardware:
- Real World Interface B12
(Synchro Drive)
- 640 X 480 Logitech webcam
on an omnidirectional mirror




Navigation




Advantages

No robot model « S —
required ] | ROV R P
Minimal 8

computational E

requirements § |

Limited input | BTy |
information 0 IO N NI -
required | -
Robustness to ) _ _

noisy information — - D? !

Distance [cm]



Robustness to hardware damage

]
-
7 No model of the robot

The robot can change
during runtime!

Robot: simulated mobile robot with two
independent wheels and an omnidirectional
camera

Task: reach a red hemisphere

Sensory information: number of red pixels
in the camera image

NS

N / } 4 simulated hardware faultiJ

—
[

Change in the size
of a wheel

Change of the
rotation axis of a wheel

Uncontrollability of
a wheel

Obscuration of 20%

of the camera

\

/




Results

The robot is able to
reach the target in all

the cases

An optimal ratio
between the noise
and the signal exists

This ratio depends on
the hardware and

environment
conditions

Performance

0.9
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0.8 - : . ]
.H_*__.--" _+_ _-_$— %1{' ~ -i- ——_____*
&K* =
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02F 4| # \
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0.1 ;*,ELF —#— rotation axis
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Movement in a parameter space

Attr. 0 Camera 0 Attr. 1 Camera 0 Attr. 2 Camera 0 Attr. 3 Camera 0

Attr. 3

Attr. 4 Camera 0 Attr. 5 Attr. 7

Attr. 7




Applications — humanoid robot

e llll‘l‘l.FI || | S

—— R L
J
- ‘

MBR used to control Task: maximize the crawling
the parameters of a CPG speed

network



Applications — pneumatic robot arm

Hardware:
- pnematic robot arm
17 actuators, 7/DOFs
- 2X FL2-0852 camera
with EMVL-316 CCTYV lens

s~ Directions close to the optimal are taken
with the highest probability

L
=

Frequency
- ma
2 8

Task: reach 3 virtual
cos(6) targets

-1 0.8 -06 -04 -02 ] nz2 0.4 0.6 0.8 1



Questions ?
]

Thank you




