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NBA における新ポジションの提案とラインアップ最適化
Proposing new positions and optimizing player combinations in the NBA
　

物質システム科学専攻 塚田 憲哉
指導教員 Micheletto Ruggero

　� �
ソフトクラスタリング : クラスタに所属する確率を計算し，適切なクラスタ数と，各
クラスタに所属する確率であるクラスタ確率を算出する．
ラインナップ : バスケットボールにおけるコートに同時に出場する 5 人の選手の組み
合わせ．
OffRTG : 100 回の攻撃における得点数．
DefRTG : 100 回の守備における失点数．
ラインナップ最適化 : 説明変数をクラスタ確率，目的変数を OffRTG．DefRTG とし
て決定木ベースの回帰分析を行い，最適なラインナップを予測する
NBA : 北米男子プロバスケットボールリーグ� �
<研究の背景と目的>

バスケットボール競技において，試合中に 1 度にプレーすることができるのは 5 人のみ
である．また，選手はそれぞれ 5 つのポジションが割り当てられている．しかし，近年の
NBA では，選手の役割の多様化によりポジションレス化が進んでおり，多くの選手の役割
や特徴を従来のポジションに当てはめることが難しい．
先行研究において，NBA データを用いたクラスタリングにより，選手の特徴を正確に捉
えることができる新たなポジションが提案された．新ポジションの提案には，教師なしク
ラスタリングである Gaussian Mixture Model (GMM) を使用し， 9 つのポジションを提
案した．その新ポジションから，ランダムフォレストを用いて選手 5 人の組み合わせであ
るラインナップ最適化を行った．
先行研究の課題として，主にオフェンスのスタッツを使用しており，ディフェンスの能
力が十分に評価されていない．また，オフェンスで同様の特徴を持っている選手も，ディ
フェンスでは異なる特徴を持つ場合がある．さらに，ラインアップを構築する上で選手の
スキルが考慮されていないという課題もある．
本論文では，試合中の細かなプレーに関するスタッツとディフェンスに関するスタッツ
を追加し，オフェンスとディフェンスそれぞれの新ポジションの提案を目指す．また，提
案された新ポジションと選手のスキルを組み合わせることで，ラインナップ最適化も行う．
研究結果から，チーム戦略や移籍の支援だけでなく，組み合わせ最適化モデルを用いた他
分野への応用も目指す．

<方法>

対象とするデータは，NBA の 2015-16 シーズンから 2020-21 シーズンのレギュラーシー
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ズンにおける全チームの試合データとする．なお，選手個人のデータは異常値を除去する
為にシーズン通算 30 試合以上出場とし，1 試合平均 12 分以上出場した選手とした．クラ
スタリングでは選手の能力よりもプレーの特徴を捉える為に，シュートに関するスタッツ
の多くは成功率ではなく試投数とした．また，出場時間によるパフォーマンスの差を除去
する為に，シュート試投数は全フィールドゴール試投数に対する割合とし，その他スタッ
ツは出場時間に対する割合とした．クラスタリングには統計解析ソフト R の mclust パッ
ケージによる EM アルゴリズムに基づくソフトクラスタリングを用いた．mclust を使用
することで．クラスタに所属する確率を得ることができる．
ラインアップ分析では，クラスタリングによって割り当てられたクラスタを新ポジショ
ンとし，各クラスタに所属する確率を用いて回帰分析を行う．表 1 のようにクラスタ確率
を基にラインアップを作成し，各ポジションの合計値を説明変数とする．目的変数はライ
ンアップの評価指標である Offensive Rating，Defensive Rating を用いた．各 Rating は
100 ポゼッションごとの得失点数を表している．

表 1: クラスタ確率を用いたラインナップの例
選手名 Cluster 1 Cluster 2 Cluster 3 · · · Cluster n

選手 1 0.30 0.70 0.00 · · · 0.00

選手 2 0.00 1.00 0.00 · · · 0.00

選手 3 0.10 0.00 1.00 · · · 0.00

選手 4 1.00 0.00 0.00 · · · 0.00

選手 5 0.00 0.00 0.00 · · · 1.00

合計値 1.40 1.70 1.00 · · · 1.00

クラスタ確率を使用した回帰分析を行った後，選手のスキルとクラスタ確率の両方を
考慮したラインナップ最適化も行う．選手のスキルを選手版 Offensive Rating，Defensive

Rating とし，それぞれにクラスタ確率を乗じたものを説明変数とする．

<結果と考察>

クラスタリングの結果，オフェンスは 7 つ，ディフェンスは 5 つのクラスタとなった．そ
れぞれの分布を図 1，2 に示す．

図 1: オフェンスクラスタの分布 図 2: ディフェンスクラスタの分布

各クラスタのスタッツを比較し，特徴の一部を表 2, 3 にまとめ，新ポジションを定義
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した．

表 2: 新ポジションの定義 (オフェンス)

新ポジション 特性 ハイスコア
スタッツ

ロースコア
スタッツ

Utility

Forward

アウトサイドシュートの成功率が
高く，インサイドでも得点できる
汎用性の高いフォワード．

MID FGA%

USG, 3P%

CAT 2P，RES

OF REB

Scoring

Guard

Solid Guard よりも USG

が高く，シュート本数や，
アイソレーションが多い．

FGA，USG

AST, ISO

OF REB

C3 FGA%

CAT 3PFGA

表 3: 新ポジションの定義 (ディフェンス)

新ポジション 特性 ハイスコア
スタッツ

ロースコア
スタッツ

Rim

Protector

ブロック数が最も多く，
リング周辺でディフェンス
する為移動速度は遅い．

DF REB，BLK

CON 2P

STL，DFL

CON 3P

Versatile

Defender

スティール以外のスタッツは
平均的に高く，汎用性が高い．

dfISO，DF REB

CON 3P
STL，DFL

オフェンスとディフェンスに分けてクラスタリングを行うことで，従来のポジションに
比べ，より選手の特徴を捉えた新ポジションを提案することができた．また，表 4 のよう
な予測用データセットを使用し，スキルを考慮したラインナップ最適化モデルを作成した．
各ポジションの合計値が 450 から 600 までの全ての組み合わせを，間隔を 30 として作成
し，予測モデルから予測値を求めた．
作成したモデルを用いて，実際に Los Angels Lakers の Lebron James と Anthony Davis

の 2 選手を中心に Offensive Rating が最大となるようなラインアップを構築した．その結
果，構築したラインアップの方が，実際の Los Angels Lakers のラインナップデータの最
高値よりも高い値となった．

表 4: 予測用データセット (クラスタ確率 ×Player OFF RTG)
Solid

Guard

Utility

Forward

High Usage

Forward

Spot Up

Shooter

Stretch

Rebounder

Traditional

Center

Scoring

Guard

600 0.00 0.00 0.00 0.00 0.00 0.00

570 30 0.00 0.00 0.00 0.00 0.00

540 30 30 0.00 0.00 0.00 0.00

· · · · · · · · · · · · · · · · · · · · ·
0.00 0.00 0.00 0.00 0.00 0.00 600

オフェンスにおいては，選手のスキルをクラスタ確率と共に使用することで，実際の選
手のスキルを考慮した予測モデルを構築する事ができた．これにより，選手の移籍やチー
ムの戦術の提案にも繋がる結果が得られた．しかし，ディフェンスにおいては予測モデル
が極端な値をとってしまい，ポジション間での相互作用を正確に示すことができなかった．
ディフェンスのスキルとクラスタ確率を使用した予測モデル構築では，クラスタリングに
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使用したスタッツが 11 個であり，オフェンスに比べ少なかったため，十分にディフェン
ススキルを評価できなかったと考えられる．そこで，より詳細なディフェンスのスタッツ
を追加することで精度の向上に繋がると考えられる．本論文では，オフェンスとディフェ
ンスに分けてポジションを提案したが，今後の展望として，それらを組み合わせて 1 つの
予測モデルを作成することができれば，より実戦で使いやすくすることができると考えら
れる．
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1 はじめに
バスケットボール競技において，試合中に 1 度にプレーすることができるのは 5 人の
みである．また，選手はそれぞれ 5 つのポジションが割り当てられている (NBA.com，
2015)．しかし，バスケットボールは近年，選手の役割の多様化によりポジションレス化が
進んでおり，多くの選手の役割や特徴は，表 1 に示す従来の 5 つのポジションに当てはめ
る事が難しい．

表 1: 従来の 5 つのポジション
略称 名前 役割

PG Point Guard
チームの最高のドリブラーでありパサーである．
相手の PG を守りボールのスティールを狙う．

SG Shooting Guard
チームの最高のシューターである．
長距離のシュートを決めることができ．良いドリブラーである．

SF Small Forward
背の低い選手や高い選手を相手にプレーする．コート上を
動き回り，長距離でも近距離のシュートでも得点することができる．

PF Power Forward

リングの近くでリバウンドや，背の高い選手をディフェンス
するなど，センターのような役割を担う．
しかし，センターよりも長距離のシュートを打つことがある．

C Center

チームで最も背の高い選手で，リングの近くでプレーする．
オフェンスでは近距離のシュートでの得点やリバウンドをとる．
ディフェンスではシュートブロックや，シュートのリバウンドをとる．

先行研究において，北米男子プロバスケットボールリーグ National Basketball Assoca-

tion (以下 : NBA) のデータを用いたクラスタリングにより，現代の選手の特徴を正確に
捉える事ができる新ポジションが提案された (Kalman and Bosh, 2020)．新ポジションの
提案には，教師なし学習のクラスタリングである Gaussian Mixture Model (GMM) を使
用し，9 つのポジションを提案した．その新ポジションから，選手 5 人の組み合わせであ
るラインアップの最適化を，ランダムフォレストを使用することで行った．
先行研究にて使用されたスタッツの多くはオフェンスに関するものであり，ディフェン
スの能力は十分に考慮されていない．また，オフェンスにおいて同様の特徴を持つ選手で
あっても，ディフェンスでは異なる特徴を持つ場合がある．さらに，ラインアップを構築
する上で，選手のスキルが考慮されていないという課題もある．そこで，本研究では試合
中の細かなプレーに関するスタッツと，ディフェンスに関するスタッツを追加し，オフェ
ンスとディフェンスに分割することでそれぞれの新ポジションの提案を目指す．また，提
案された新ポジションと選手のスキルを組み合わせることでラインアップ構築も行う．研
究結果から，チーム戦略や選手の移籍の援助だけでなく，組み合わせ最適化モデルを用い
た他分野への応用も目指す．

2 本論文で用いるスタッツ
本論文でクラスタリングに用いるスタッツを以下の 表 2，3 に示す. オフェンスでは
シュートに関する基本的なスタッツに加え，ポストアップ数やキャッチアンドシュート数，
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エリア別のシュート数等も使用することで，スペーシングや選手の細かな特徴を考慮して
クラスタリングを行う．USG の計算方法を式 1 に示す．なお，Possession とは攻撃回数
を表す．

表 2: オフェンスのクラスタリングに用いるスタッツ及び記号
記号 スタッツ 意味
HT Height 身長
PTS Points 得点数
FGA Field Goals Attempted フィールドゴール試投数

3PA% 3 Point FGA / FGA
フィールドゴール試投数に対する
3ポイントシュート試投数の割合

3P% 3 Point Field Goal % スリーポイント成功率

FTA Free Throws Attempted / FGA
フィールドゴール試投数に対する
フリースローの割合

FT% Free Throw % フリースロー成功率

AST Assist Adjusted
アシスト数にフリースローと
セカンダリーアシスト数を加えた総数

OF REB Offensive Rebounds オフェンスリバウンド数
TOV Turnovers ターンオーバー数
DRI Drives ドライブ数
USG Usage Rate 使用率 (式 (1) 参照)

ISO Isolation アイソレーション数

PUL FGA% Pull Up FGA / FGA
フィールドゴール試投数に対する
プルアップシュート試投数の割合

POS Post Ups ポストアップ数

SPO FGA% Spot Up FGA / FGA
フィールドゴール試投数に対する
スポットアップシュート試投数の割合

CAT 2PFGA% Catch & Shoot 2 Point FGA / FGA
フィールドゴール試投数に対するキャッチアンド
シュート 2 ポイントシュート試投数の割合

CAT 3PFGA% Catch & Shoot 3 Point FGA / FGA
フィールドゴール試投数に対するキャッチアンド
シュート 3 ポイントシュート試投数の割合

TRN Transitions トランジション数

RES FGA% Restricted Area FGA / FGA
フィールドゴール試投数に対する
制限区域内シュート試投数の割合

ITP FGA% In The Paint FGA / FGA
フィールドゴール試投数に対するペイントエリア内
シュート試投数の割合

MID FGA% Mid-Range FGA / FGA
フィールドゴール試投数に対するミドルレンジ
シュート試投数の割合

C3 FGA% Corner 3 Point FGA / 3PA
3 ポイントシュート試投数に対するコーナー
3 ポイントシュート試投数の割合

TOUCH Touches タッチ数
PASS Passes パス数
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表 3: ディフェンスのクラスタリングに用いるスタッツ及び記号
記号 スタッツ 意味
HT Height 身長

DF REB Defensive Rebounds ディフェンスリバウンド数
STL Steals スティール数
DFL Deflections ディフレクション数
BLK Blocks ブロック数
DFG% Dfended Field Goal % ディフェンスした相手のフィールドゴール成功率
CON 2P Contested 2 Ponit Shots シュートチェックした 2 ポイントシュート試投数
CON 3P Contested 3 Point Shots シュートチェックした 3 ポイントシュート試投数
dfISO Defended Isolations アイソレーションに対してのディフェンス回数
dfPOS Defended Post Ups ポストアップに対してのディフェンス回数
SPE Average Speed Defense ディフェンス時の平均移動速度

FGA+ PossessionEndingFTA+ TOV

Possessions
(1)

チームとラインアップ，選手個人に対する評価指標を以下の表 4 に示す．

表 4: 決定木分析に用いるスタッツ及び記号
記号 スタッツ 式 意味

OffRTG Offensive Rating 100 ×
(

Points
Possessions

)
100 ポゼッションごとの得点数

DefRTG Defensive Rating 100 ×
(

Points
Possessions

)
100 ポゼッションごとの失点数

Off RTG と Def RTG は 100 ポゼッションごとの得点数と失点数であり，ラインアップ
と選手個人の評価指標として採用する．また，選手個人の評価指標に使用する際には，該
当選手がコートにいる場合の 100 ポゼッションにおける得失点数とし，それぞれ Player

OffRTG，Player DefRTG とする．

3 手法
3.1 対象データ
NBAの 2015-16 シーズンから 2020-21 シーズンのレギュラーシーズンにおける全チー
ムのデータを対象とした．なお，対象とする選手個人のデータはシーズン通算 30 試合以
上出場とし，1 試合平均 12 分以上出場した選手とする．これは，30 試合以下または 12 分
以下の出場時間では，各スタッツが極端な値をとることがあり，それを除外する為である．
ラインアップデータは 2015-16 シーズンから 2020-21 シーズンにおける 5 シーズン全ての
データを対象とした．なお，各スタッツはシーズン平均値とし，データは NBA.com にて
公開されているデータを使用した．
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3.2 クラスタリング
クラスタリングの目的として，オフェンスとディフェンスのそれぞれの特徴をより捉え
た新ポジションを提案したい．しかし，同じオフェンスの特徴を持つ選手同士でも，ディ
フェンスにおいては異なる場合がある．そこで，オフェンスとディフェンスのそれぞれで
クラスタリングし，新ポジションを提案する．
クラスタリングでは選手の能力よりもプレーの特徴を捉える為に，シュートに関するス
タッツの多くは成功率ではなく試投数とした．また，出場時間によるパフォーマンスの差
を排除するために，シュート試投数は全フィールドゴール試投数に対する割合とし，その
他スタッツは出場時間 (分) に対する割合とした．クラスタリングを行う前処理として，全
てのスタッツを標準化し，平均を 0，分散を 1 とした．
対象とした試合における表 2，3 のスタッツを用いて，EMアルゴリズムによる選手のク
ラスタリングを行う．EM アルゴリズムを用いたソフトクラスタリングを行うことで，ク
ラスタに所属する確率と，最適なクラスタ数を得ることができる．EMアルゴリズムにつ
いては主に松井・小泉 (2019) を参照した．

3.2.1 混合分布モデル

観測されたデータ x に確率分布モデルを想定し，どのような確率分布モデルに従って生
成されたかを考える場合，正規分布が用いられることが多い．しかし，複雑なデータ発生
の確率構造は捉えられない．そこで，いくつかの正規分布を線形結合で合わせた式 (2) に
従う確率分布モデルを用いる．

f(x|θ) =
g∑

j=1

πj
1√
2πσ2

j

exp

{
−(x− µj)

2

2σ2
j

}
(2)

ただし，πj(j = 1, 2, · · · , g) は 0 ≤ πj ≤ 1 を満たし，その和は ∑g
j=1 πj = 1 とする．この

確率分布モデルのパラメータは，{µj , σ
2
j ; j = 1, 2, · · · , g} に加えて {πj ; j = 1, 2, · · · , g} で

あり，これらをパラメータベクトル θ で表す．モデルのパラメータをデータから推定し，
さらに重ね合わせた正規分布の個数 g を選択できれば，いくつのクラスタに分類されるか
がわかる．このように，いくつかの確率分布を線形結合で重ね合わせた確率分布モデルは，
混合分布と呼ばれ次のように定式化することができる．
いま．p 次元データ x は， g 個の密度関数 fj(x|θ)(j = 1, 2, · · · , g) の線形結合で表され
る式 (3) の確率分布に従って観測されたとする．

f(x|θ) =
g∑

j=1

πjfj(x|θj) (3)

ここで，π1, π2, · · · , πg は，0 ≤ πj ≤ 1 を満たす混合比率で，その和は ∑g
j=1 πj = 1 とす

る．分布を既定するパラメータは θ = {θ1,θ2, · · · ,θg, π1, π2, · · · , πg} である．特に，平均
ベクトル µj , 分散共分散行列

∑
j の多次元正規分布 Np(µj ,

∑
j) の線形結合で表される確

率分布モデルは，混合正規モデルと呼ばれる．

8



混合分布モデルによるデータの分類は，ベイズ理論の枠組みで捉えると，次のように述
べることができる．確率分布 fj(x|θj) を第 j 番目の群 Gj を特徴づける分布と考える．こ
れは，データ x が第 j 群からのものであるとしたときの条件付き尤度である．また，対
応する混合比率 πj とは，その群を選択する確率，すなわち事前確率である．したがって，
データ x が群 Gj からのものであるという事後確率は，ベイズの定理より式 (4) で与えら
れる．

p(j|x) = πjfj(x|θj)∑g
k=1 πkfk(x|θk)

− πjfj(x|θj)
f(x|θ)

, j = 1, 2, · · · , g (4)

データ x は，混合分布モデルが推定できれば，g 個の事後確率の中でその値が最大の群に
属するとする．このように，分類の対象とするデータでモデルを推定して，事後確率の最
大化によって各データを分類すれば，クラスタリング手法として用いることができる．

3.2.2 モデルの推定 EMアルゴリズム

混合分布モデルのパラメータの最尤推定値は，解析的に式として表すことはできない．
このため推定値を求めるには数値的最適化法の適用が必要であるが，特に，EM アルゴリ
ズムによる推定法が広く用いられている．EM アルゴリズムを適用すると，混合正規分布
モデルのパラメータ {(πj ,µj ,

∑
j); j = 1, 2, · · · , g} は次のステップを通して推定される．

混合比率，平均ベクトルと分散共分散行列 {(πj ,µj ,
∑

j); j = 1, 2, · · · , g} に対して，初
期値を設定する．第 t ステップ目の更新値 {(π(t)

j ,µ
(t)
j ,
∑(t)

j ); j = 1, 2, · · · , g} から第 t+ 1

ステップ目は，次の E ステップと M ステップの繰り返しによって更新する．
E ステップ

第 i 番目のデータ xi が群 Gj からのものであるという事後確率を式 (5) のように計
算する．

p(t+1)(j|xi) =
π
(t)
j fj(xi|θ

(t)
j )∑g

k=1 π
(t)
k fk(xi|θ

(t)
k )

, i = 1, 2, · · · , n, j = 1, 2, · · · , g (5)

M ステップ
第 t+ 1 ステップ目の混合比率，平均ベクトル，分散共分散行列を，式 (6) によって
更新する．

π
(t+1)
j =

1

n

n∑
i=1

p(t+1)(j|xi), µ
(t+1)
j =

1

nπ
(t+1)
j

n∑
i=1

p(t+1)(j|xi)xi,

(t+1)∑
j

=
1

nπ
(t+1)
j

n∑
i=1

p(t+1)(j|xi)(xi − µ
(t+1)
j )(xi − µ

(t+1)
j )T (6)

収束条件
設定した十分小さな値 c > 0 に対し，観測データに基づく尤度関数について，式 (7)

が c 以下なるまで反復更新する．∣∣∣∣∣∣
n∑

i=1

log


g∑

j=1

π
(t+1)
j fj(xi|µ(t+1)

j ,

(t+1)∑
j

−
n∑

i=1

log


g∑

j=1

π
(t)
j fj(xi|µ(t)

j ,

(t)∑
j


∣∣∣∣∣∣ (7)
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さまざまなモデルの候補の中で，どのモデルが最も良くデータ発生の確率構造を捉えて
いるかを決定する必要がある．このような問題に対しては，g = 2, 3, · · · と設定して EM法
によって推定した混合分布モデルを情報量基準 AIC, あるいはベイズ評価基準 BIC によっ
て評価，選択する方法が考えられる．本研究では BIC を用いてモデルの評価を行った．

BIC = −2 lnL+ k lnn (8)

L は尤度関数，k はモデルのパラメータ個数，n は標本の大きさを表している．

3.3 ラインアップ分析
ソフトクラスタリングによって割り当てられた各クラスタを新ポジションとし，各ク
ラスタに所属する確率を用いたラインナップ分析をおこなう．表 5 のようにクラスタ確
率を基にラインアップを作成し，各ポジションのクラスタ確率の合計値を説明変数とす
る．目的変数は Off RTG と Def RTG を使用する．作成したラインナップデータに対し，
LightGBM を用いた決定木による回帰分析を行う．
実際にラインアップを構築する際に，選手のポジションだけでなく，各選手のスキルも
考慮する必要がある．そこで，選手のスキルとクラスタ確率の両方を使用し，クラスタ確
率のみ使用した場合と予測精度を比較する．また，各チームは 2, 3 人のスター選手を中心
にラインアップを構築しており，実際に予測モデルを用いてスター選手を中心とした選手
の組み合わせを最適化する．

表 5: クラスタ確率を用いたラインナップの例
選手名 Cluster 1 Cluster 2 Cluster 3 · · · Cluster n

選手 1 0.30 0.70 0.00 · · · 0.00

選手 2 0.00 1.00 0.00 · · · 0.00

選手 3 0.10 0.00 1.00 · · · 0.00

選手 4 1.00 0.00 0.00 · · · 0.00

選手 5 0.00 0.00 0.00 · · · 1.00

合計値 1.40 1.70 1.00 · · · 1.00

3.3.1 LightGBM

勾配ブースティング決定木 (以下 : GBDT) は有名な機械学習アルゴリズムであり，
XGBoost や pGBRT 等多くの効果的な実装が存在する．それらの実装の多くは特徴量の
次元が高く，データサイズが大きい場合，各特徴量について可能性のある全ての分割点の
情報利得の推定のために，全てのデータインスタンスをスキャンする必要があり，非常に
時間がかかる．LightGBM では，勾配片側サンプリング (以下 : GOSS) と専用機能バンド
ル (以下 : EFB) を用いる事で，従来の GBDT と同等の精度を達成しながら，学習プロセ
スを最大 20 倍高速化することが示された．
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3.3.2 Gradient Boosting Decision Tree

GBDT は決定木のアンサンブルモデルであり，決定木の学習において最適な分割点を見
つけることが最も時間を要する．最適な分割点を見つけるためのアルゴリズムとして， 1

に示すようにヒストグラムに基づくアルゴリズムがある．ヒストグラムベースアルゴリズ
ムはソートされた特徴量から分割点を見つけるのではなく，連続的な特徴量をビンにし，
学習時にこれらのビンを使用して特徴量のヒストグラムを構築する．ヒストグラムベース
アルゴリズムは，メモリ消費量と学習速度の両方で効率的である．

図 1: Histogram-based Algorithm
図 2: Gradient-based One-Side Sampling

図 1 に示すように，ヒストグラムベースアルゴリズムは特徴量のヒストグラム基づいて
最適な分割点を導出する．ヒストグラムの構築には O(#data×#feature), 分割点の導出
には O(#bin ×#feature) のコストがかかる．通常 #bin は #data よりはるかに小さい
ため，ヒストグラムの構築が計算量の大部分を占める，#data や，#feature を減らすこ
とで GBDT の学習を大幅に高速化することができる．

3.3.3 Gradient-based One-Side Sampling

GBDT における各データインスタンスの勾配は，データサンプリングに有用な情報を提
供することができる．つまり，あるインスタンスで勾配が小さい場合，学習誤差は小さく
十分に学習できていることがわかる．これらの十分に学習されたデータインスタンスを削
除することが考えられるが，データ分布が変化してしまい，学習済みモデルの精度が損な
われてしまう．この問題を回避するために GOSS という新たな手法を用いる．
GOSS は勾配が大きいインスタンスを全て残し，勾配が小さいインスタンスに対してラ
ンダムサンプリングを行う．情報利得を計算する際，データ分布への影響を補正するため
に，GOSS は勾配の小さいデータインスタンスに対して定数 1−a

b で増幅させる (図 2 参
照)．具体的には，GOSS はまずデータインスタンスを勾配の絶対値に従ってソートし，上
位 a× 100% のインスタンスを選択する．次に，残りのデータから b× 100% のインスタン
スをランダムサンプリングする．その後，GOSSは情報量を計算する際に，サンプリング
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された勾配の小さなデータを定数 1−a
b で増幅する．それにより，元のデータ分布をあまり

変えずに学習不足のインスタンスに重点を置く．
GBDT は決定木を用いて入力空間 Xs から勾配空間 G への関数を学習する．ここで，

n 個の独立同一分布インスタンス {x1, · · · , xn} からなる学習データがあり，各 xi は空間
Xs における s 次元のベクトルであるとする．勾配ブースティングの各反復において，モ
デルの出力に関する損失関数の負の勾配は {g1, · · · , gn} と表記される．決定木モデルは最
も情報量の多い特徴で各ノードを分岐させる．GBDT では，情報利得は通常分割後の分類
で測定され，式 (9) で定義される．なお，決定木の固定ノードに関する学習データを O と
する．式 (9) はこのノードの点 d で分割したときの分散利得を表す．

Vj|O(d) =
1

nO

(
(
∑

{xi∈O:xij≤d} gi)
2

nj
l|O(d)

+
(
∑

{xi∈O:xij>d} gi)
2

nj
r|O(d)

)
(9)

ここで，nO =
∑

I[xi ∈ O], nj
l|O(d) =

∑
I[xi ∈ O : xij ≤ d] かつ nj

r|O(d) =
∑

I[xi ∈ O :

xij > d] である．特徴量 j に対し，決定木アルゴリズムは d∗j = argmaxdVj(d) を選択し，
最大の利得 Vj(d

∗
d) を計算する．次に，点 dj∗ にける特徴 j∗ に従い，データを左右の子

ノードに分割する．
提案する GOSS法では, まず学習インスタンスをその勾配の絶対値に従って降順にラン
ク付けする. 次に，より大きな勾配を持つ上位 a× 100% のインスタンスを残し,インスタ
ンス部分集合 A を得る．より小さな勾配を持つ (1− a)× 100% のインスタンスからなる
残りの集合 Ac に対して，さらにサイズ b× |Ac| の部分集合 B をランダムサンプリングす
る．最後に，部分集合 A ∪ B に対する推定分散利得 Ṽj(d) に従いインスタンスを分割し，
式 (10) のようになる．

Ṽj(d) =
1

n

(
(
∑

xi∈Al
gi +

1−a
b

∑
xi∈Bl

gi)
2

nj
l (d)

+
(
∑

xi∈Ar
gi +

1−a
b

∑
xi∈Br

gi)
2

nj
r(d)

)
(10)

ここで，Al = {xi ∈ A : xij ≤ d}, Ar = {xi ∈ A : xij > d}, Bl = {xi ∈ B : xij ≤ d}, Br =

{xi ∈ B : xij > d} であり，係数 1−a
b は B の勾配の総和を Ac のサイズに戻して正規化す

るために用いる．
GOSS は全インスタンスに対する正確な Vj(d) ではなく，より小さなインスタンス部分
集合に対する推定 Ṽj(d) を用いて分割点を決定するため，計算コストを大幅に削減するこ
とが可能である．さらに重要なことは，定理 1 により，GOSS は学習精度をあまり落とさ
ずランダムサンプリングより優れていることが示されることである．

定理 1. GOSSにおける近似誤差を ε(d) = |Ṽj(d)−Vj(d)|かつ ḡjl (d) =
∑

xi∈(A∪Ac)l
|gi|

nj
l (d)

, ḡjr(d) =∑
xi∈(A∪Ac)r

|gi|
nj

r(d)
とする．少なくとも 1− δ の確率で式 (11) が成り立つ.

ε(d) ≤ C2
a,b ln

1

δ
·max

{
1

nj
l (d)

,
1

nj
r(d)

}
+ 2DCa,b

√
ln 1

δ

n
(11)

ただし，Ca,b =
1− a√

b
maxxi∈Ac |gi|, かつ D = max(ḡjl (d), ḡ

j
r(d))
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3.3.4 Exclusive Feature Bundling

高次元データは通常非常に疎らである．疎らな特徴量空間では，多くの特徴量が互いに
排他的であり，同時にゼロ以外の値をとらない．このような排他的な特徴量を 1 つの特徴
量にまとめることを Exclusive Feature Bundling (以下 : EFB) と呼ぶ．特徴量走査アルゴ
リズムにより，個々の特徴量から得られるものと同じヒストグラムを特徴量バンドルから
構築できる．このように，#bundle << #feature とすることで，ヒストグラム構築の複
雑さは O(#data×#feature) から O(#data×#bundle) へと変化する．これにより，精
度を落とすことなく GBDT の学習を大幅に高速化することができる．
EFB アルゴリズムでは，多くの排他的特徴量をより少ない密な特徴量にバンドルできる
ため，特徴量がゼロの場合の不要な計算を効果的に回避することができる．各特徴量にゼ
ロ以外のデータを記録するテーブルを使用することで，基本的なヒストグラムベースアル
ゴリズムを，ゼロの特徴量を無視する方向に最適化することも可能である．このテーブル
をスキャンすることで，1 つの特徴量に対するヒストグラム構築のコストは O(#data) か
ら O(#non zero data) へと変化する．しかし，この方法では木構造全体の成長過程にお
いて，これらの特徴量ごとのテーブルを維持する為に，追加のメモリと計算コストが必要
となる．そこで，LightGBM ではこの最適化を基本機能として実装した．

4 結果
4.1 新ポジションの提案
4.1.1 クラスタリング結果

統計解析ソフトの R により，mclust パッケージを使用してソフトクラスタリングを行っ
た．ハードクラスタリングではクラスタ数を事前に決めるのに対し，ソフトクラスタリン
グはクラスタ数とそれに所属する確率を求めることができる．クラスタリングの結果，オ
フェンスは 7 つ，ディフェンスは 5 つのクラスタとなった．それぞれの分布を図 3，4 に
示す．

図 3: オフェンスクラスタの分布 図 4: ディフェンスクラスタの分布

各クラスタのスタッツを比較し，特徴を表 6, 8 にまとめ新ポジションを定義した．ま
た，表 7，9 にはポジションに該当する選手を例として示す．
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表 6: 新ポジションの定義 (オフェンス)

新ポジション 特徴 ハイスコア
スタッツ

ロースコア
スタッツ

Solid

Guard

ドリブルからのプレー展開が
多く，アイソレーションが
少ないアシスト重視のガード．

PUL

DRI, AST

CAT 2FGS%

OF REB, RES

Utility

Forward

アウトサイドシュートの成功率が
高く，インサイドでも得点できる
汎用性の高いフォワード．

MID FGA%

USG, 3P%

RES, AST

OF REB

High Usage

Forward

ポストアップが多く，USG が高い．
3P% が低く，ミドルレンジや

インサイドでオフェンスを展開する．

MID FGA%

POS, USG

3P FGA%，FT%

CAT 3FGA%

Spot Up

Shooter

3 ポイントシュートを得意とし，
キャッチアンドシュートが多く，
タッチ数やドライブ数は少ない．

CAT 3FGA%

C3 FGA%

3P%, SPO

FGA，USG

ITP FGA%

Stretch

Center

インサイドで得点やリバウンド
をこなし，3 ポイントシュートの
確率は平均以上の値を持つ．

OF REB

3P%，POS

RES FGA%

PUL FGA%，TRN

AST

Traditional

Center

リバウンドとインサイドの得点
割合が最も高く，3 ポイント
シュートはほとんど打たない．

OF REB，FTA%

RES FGA%

3P%，TOUCH

TRN

Scoring

Guard

Solid Guard よりも USG

が高く，シュート本数や，
アイソレーションが多い．

FGA，USG

AST, ISO

OF REB

C3 FGA%

CAT 3PFGA%

表 7: 新ポジションの該当選手紹介 (オフェンス)

新ポジション 例
Solid

Guard

’16 Patty Mills

’20 Fred VanVleet

Utility

Forward

’16 Klay Thompson

’19 Kawhi Leonard

High Usage

Forward

’19 Giannis Antetokounmpo

’20 Joel Embiid

Spot Up

Shooter

’17 PJ Tucker

’20 Danny Green

Stretch

Center

’16 Kevin Love

’18 Draymond Green

Traditional

Center

’18 Jusuf Nurkic

’20 Rudy Gobert

Scoring

Guard

’16 Stephen Curry

’20 Mike Conley

表 6から，同じセンターポジションにおいて，従来のリング周辺でプレーする Traditional

Center とアウトサイドのシュートもこなす Stretch Center の 2 種類のポジションを作成
することができた．通常ディフェンスにおいては，背の高い選手がより多くラインアップ
にいた方が有効だが，センターばかりを揃えるとオフェンスでスペースをお互いにつぶし
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あってしまう．しかし，ラインナップにセンターが 2 人いたとしても，Traditional Center

と Stretch Center の組み合わせの場合，互いに異なる特徴を持つため，コートのスペース
を狭くすることなくプレーできる可能性が示された．3 ポイントシュートが得意な選手を
シューターと呼ぶが，ガードの役割もこなす Scoring Guard と，シュートを主軸とする
Spot Up Shooter に分けることで，ガードとシューターの両方の特徴を持つポジションが
提案された．試合中の細かなプレーに関するスタッツを使用することで，従来よりもポジ
ション細分化することができた．

表 8: 新ポジションの定義 (ディフェンス)

新ポジション 特徴 ハイスコア
スタッツ

ロースコア
スタッツ

Average

Outside Defender

平均的なスタッツを持ち，移動
スピードは平均以上の値を持つ． SPE

CON 2P

BLK

Aggressive

Defender

平均的な身長で，3 ポイント
シュートに対し素早く

シュートチェックにいく回数が多い．
SPE，CON 3P BLK，DF REB

Rim

Protector

ブロック数が最も多く，
リング周辺でディフェンス
するため移動速度は遅い．

DF REB，BLK

CON 2P

STL，DFL

CON 3P

Versatile

Defender

スティール以外のスタッツは
平均的に高く，汎用性が高い．

dfISO，DF REB

CON 3P
STL，DFL

Elite Outside

Defender

スティールやディフレクションが
多く，アウトサイドディフェンス

を得意とする．

STL，DFL

SPE

BLK，dfPOS

CON 2P

表 9: 新ポジションの該当選手紹介 (ディフェンス)

新ポジション 例
Average

Outside Defender

’18 Stephen Curry

’20 Mike Conley

Aggressive

Defender

’16 Klay Thompson

’20 Paul George

Rim

Protector

’19 Brook Lopez

’20 Rudy Gobert

Versatile

Defender

’18 Draymond Green

’18 Pascal Siakam

Elite Outside

Defender

’17 Andre Roberson

’20 Kawhi Leonard

ディフェンスでは，ブロックが得意な高身長の Rim Protector や，スティールやディ
フレクションが得意な低身長の Elite Outside Defender，汎用性の高い Versatile Defender

等，異なる特徴を持つポジションが提案された．ディフェンスにおいて重視される BLK

や STL 以外にも，ディフェンス時のスピードも考慮したことで，素早い動きとシュート
チェックを得意とする Aggressive Defender を作成することができた．
各オフェンスとディフェンスの特徴量の一部を図 5，6 に示す．標準化されたスタッツの
中で，0 以上のスタッツはオレンジに，0 未満のスタッツは灰色に塗りつぶした．Stretch
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Center はリバウンドやポストアップと共に，3P% も平均以上の値を持つ．Versatile

Defender はスティール以外のスタッツが平均的に高い値を持つ．この 2 つのポジション
に該当する選手として，2020-21 シーズンの Draymond Green が挙げられるが，オフェン
スとディフェンスの両方で汎用性の高い選手であることが示された．実際の所属チームで
も，様々な役割をこなしていることから，選手の特徴をオフェンスとディフェンスの両方
から特定できることが示された．

図 5: Stretch Center のスタッツプロット図 図 6: Versatile Defender のスタッツプロット図

4.1.2 複数ポジション所属選手

多くの選手は 1 つのクラスタに所属する確率が高いが，2 つ以上のクラスタに所属する
選手も存在する．ソフトクラスタリングを用いる事により，複数ポジションの役割をこな
す選手を定量的に示すことができた．実際に複数クラスタに所属する選手として以下のよ
うな選手が挙げられる．オフェンスでは，2018-19シーズンの Mike Conleyは Solid Guard

45%, Scoring Guard 55% の割合となり，バランス良くガードの役割をこなせる万能選手
であることがわかる．ディフェンスでは，2017-18 シーズンの Giannis Antetokounmpo は
Rim Protector 36%, Versatile Defender 64% の割合となり，インサイドとアウトサイド両
方を守りながら，ブロックやディフェンスリバウンドをこなせるオールラウンドなディ
フェンダーであることがわかる．
クラスタリングによりオフェンスは 7, ディフェンスは 5 つのポジションが提案された
め，これらを組み合わせることで，最大 35 通りの組み合わせ，つまり 35 通りの選手の特
徴が得られた．通常のオフェンスとディフェンスを合わせた 5 通りのポジションによる選
手の分類に比べ，より細かく分類することができた．なお，実際の選手データから得られ
た組み合わせは 30 通りとなった．

4.2 ラインナップ分析
4.2.1 ラインナップ予測モデルの構築と検証

表 10 に示すようにクラスタ確率を基にラインアップを組み，OffRTG と DefRTG を予
測するモデルを構築した．表 10 のデータは 2018-19 シーズン Sacramento Kings のライ
ンナップデータである．
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表 10: 2018-19 シーズン Sacramento Kings 所属選手のクラスタ確率 (オフェンス)

選手名 Solid

Guard

Utility

Forward

High Usage

Forward

Spot Up

Shooter

Stretch

Rebounder

Traditional

Center

Scoring

Guard

I. Shumpert 0.73 0.00 0.00 0.27 0.00 0.00 0.00

W. Cauley-Stein 0.00 0.00 0.00 0.00 0.00 1.00 0.00

B. Hield 0.02 0.00 0.00 0.00 0.00 0.00 0.98

D. Fox 1.00 0.00 0.00 0.00 0.00 0.00 0.00

M. Bagley III 0.00 0.00 0.00 0.00 1.00 0.00 0.00

ラインナップデータは各ラインアップにおける出場時間の差が非常に大きく，ノイズが
多い傾向にある．例として，あるラインアップがシーズン通算 3 分出場で，その間のスコ
アが 10 - 0 でリードしていた場合，実際の OffRTG，DefRTG よりも良く評価され，正
当な評価ができないという問題がある．そこで，先行研究と同様に，600 ポゼッションを
基準とした調整済み OffRTG，DefRTG を使用する．600 ポゼッションとは約 6 試合分
のポゼッションであり，6 試合未満の場合は各スタッツや得失点において極端な値をとる
ことがあり，それを除外するためである．式 (12) に調整済み Rating の計算方法を示す．
式 (12) は，600 ポゼッション未満のラインアップは OffRTG，DefRTG が調整されてい
ることを示している．Team OffRTG，Team DefRTG はチームのシーズン平均値を示して
いる．

Possessions

600
≥ 1, ROff = OffRTG, RDef = DefRTG (12)

Possessions

600
< 1, ROff =

Possessions

600
×OffRTG+

(
1− Possessions

600

)
× Team OffRTG

RDef =
Possessions

600
×DefRTG+

(
1− Possessions

600

)
× Team DefRTG

5 シーズン分のラインナップデータから，表 10 に示すクラスタ確率を用いたソフトライ
ンナップを 10,000 件作成した．選手個人のデータ取得条件から，出場時間が 30 試合未満，
または 12 分未満の選手を除外した場合，ソフトラインナップデータは 7,634 件となった．
表 10 から 2018-19 シーズンの Sacramento Kings のソフトラインナップを例として表 11

に示す．

表 11: 2018-19 シーズン Sacramento Kings ソフトラインナップ (オフェンス)

Solid

Guard

Spot Up

Shooter

Stretch

Rebounder

Traditional

Center

Scoring

Guard

1.75 0.27 1.00 1.00 0.98

表 11 に示されていないポジションは確率 0 である．これら 7 つのクラスタ確率を説
明変数とし，オフェンスとディフェンスそれぞれ OffRTG, DefRTG を目的変数として
LightGBM による回帰分析を行った．新ポジションと目的変数の関係性を分析するにあた
り，それらの関係性を非線形に表し，ポジション間の相互作用を考慮する為に LightGBM

を使用した．予測精度の評価方法として，分析用データセットを学習データと検証用デー
タに 4 : 1 の割合で分割し，平均平方二乗誤差 (RMSE) により評価する．式 (13) 中の n

はデータ数，ŷ は予測値，y は正解値とする．予測モデルの構築のために，確率の間隔を
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0.5 とし，全組み合わせのラインナップデータを作成したものを表 12 に示す．

RMSE =

√√√√ 1

n

n∑
i=1

(ŷi − yi)2 (13)

表 12: 予測用データセット (オフェンスクラスタ確率)
Solid

Guard

Utility

Forward

High Usage

Forward

Spot Up

Shooter

Stretch

Rebounder

Traditional

Center

Scoring

Guard

5.00 0.00 0.00 0.00 0.00 0.00 0.00

4.50 0.50 0.00 0.00 0.00 0.00 0.00

4.00 0.50 0.50 0.00 0.00 0.00 0.00

· · · · · · · · · · · · · · · · · · · · ·
0.00 0.00 0.00 0.00 0.00 0.00 5.00

回帰分析の精度は，RMSE がオフェンスでは 2.09，ディフェンスでは 2.14 となり，どち
らも低く，誤差は小さい値となった．分析結果から，予測値が最も高いラインナップを表
13，14 に示す．表 13 から，OffRTG を高めるには Scoring Guard 2 人分，Stretch Center

1.25 人分と，Solid Guard，Spot Up Shooter，Traditional Center が約 0.5 人分づつとな
る組み合わせが最適なラインナップとなった．現在 NBA ではガードが攻撃のリーダーと
なることが多く，予測モデルにおいても Scoring Guard がオフェンスにおいて重要である
ことがわかる．

表 13: 調整済み Offensive Rating 予測値上位 5 位のラインナップ (クラスタ確率使用)
Solid

Guard

Utility

Forward

High Usage

Forward

Spot Up

Shooter

Stretch

Center

Traditional

Center

Scoring

Guard

予測値
(OFF RTG)

0.50 0.50 0.00 0.50 1.25 0.25 2.00 117.67

0.50 0.25 0.00 0.75 1.25 0.25 2.00 117.67

0.50 0.50 0.00 0.00 1.25 0.75 2.00 117.46

0.50 0.50 0.00 0.75 1.25 0.00 2.00 117.46

0.50 0.50 0.00 0.75 0.50 0.75 2.00 117.45

表 14 から，DefRTG を高めるには，Rim Protector，Elite Outside Defender が 2 人分
ずつと，Average Defender 1 人分の組み合わせが最適なラインナップとなった．ディフェ
ンスではブロックやスティールを得意とするポジションを多く起用することで DefRTG

を高めることが示された．Rim protector と Elite Outside Defender が 2 人分ずつ配置で
きるのであれば，Aggressive Defender や Versatile Defender をラインナップに配置する重
要性は高くない．しかし，Elite Outside Defender に所属される選手の数は 1 チーム平均
1.23 人しかおらず，所属確率が 0.25 以上の選手を含めても 1 チーム平均 1.8 人であり，
常にラインナップに 2 人分配置することは困難である．
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表 14: 調整済み Defensive Rating 予測値上位 5 位のラインナップ (クラスタ確率使用)
Average

Outside Defender

Aggressive

Defender

Rim

Protector

Versatile

Defender

Elite Outside

Defender

予測値
(DEF RTG)

1.00 0.00 2.00 0.00 2.00 101.45

0.75 0.00 2.00 0.00 2.25 101.68

0.75 0.00 2.25 0.00 2.00 101.96

0.00 1.00 2.25 0.75 1.00 102.02

1.00 0.00 2.25 0.00 1.75 102.02

アウトサイドのシュート確率が高い選手はディフェンスを引き寄せるため，リング周
辺のスペースを広げることができる．3 ポイントシュートを得意とする Spot Up Shooter

と，アウトサイドシュート確率が良いセンターである Stretch Forward の関係性は，役
割が重複しているため図 7 のように予測値は低い値となる．インサイドを攻める High

Usage Forward との相性は良く，図 8 の様に Spot Up Shooter に対し，1 人分以上の High

Usage Forward であれば高い予測値となった．ディフェンスでは，図 9，10 から， Elite

Outside Defender を 1 人分以上とした際に，Aggressive Defender よりも Average Outside

Defender を使用した方が良いことがわかる．

図 7:
Spot Up Shooter と Stretch Center の

予測値プロット図 図 8:
Spot Up Shooter と High Usage Forward の

予測値プロット図

4.2.2 スキルを考慮したラインナップ予測

選手のスキルとクラスタ確率の両方を使用し，クラスタ確率のみ使用した場合と予測精
度を比較した．また，実際のチームに対して予測モデルを用いてラインアップを構築する．
選手のスキルの評価指標として，チームの評価指標として使用した OffRTG，DefRTG

の選手版である Player OffRTG，Player DefRTG を使用する．Player OffRTG, DefRTG

は該当選手が出場している際のチームの 100 ポゼッションごとの得点数，失点数となる．
前節では説明変数としてクラスタ確率を使用したが，本節では説明変数としてクラスタ確
率に Player OffRTG または Player DefRTGを乗じた変数を使用し，目的変数は調整済み
OffRTG，DefRTG を使用してソフトラインナップを作成する．また，説明変数の間隔を
30 とし，0 ～ 600 までの範囲における全組み合わせのラインナップデータを作成したもの
を表 15 に示す．

19



図 9:
Elite Outside Defender と

Aggressive Defender の予測値プロット図 図 10:
Elite Outside Defender と

Average Outside Defender の予測値プロット図

表 15: 予測用データセット (クラスタ確率 ×Player OFF RTG)
Solid

Guard

Utility

Forward

High Usage

Forward

Spot Up

Shooter

Stretch

Rebounder

Traditional

Center

Scoring

Guard

600 0.00 0.00 0.00 0.00 0.00 0.00

570 30 0.00 0.00 0.00 0.00 0.00

540 30 30 0.00 0.00 0.00 0.00

· · · · · · · · · · · · · · · · · · · · ·
0.00 0.00 0.00 0.00 0.00 0.00 600

回帰分析の精度は，RMSE がオフェンスでは 1.96，ディフェンスでは 1.86 となり，ど
ちらも低く誤差は小さい値となった．表 15 に示した全組み合わせデータを予測モデルに
当てはめ，予測値を得た．分析結果から，予測値が最も高いラインナップを表 16，17 に
示す．表 16 から，調整済み OFF RTG を高めるには Solid Guard, High Usage Forward,

Traditional Center の値がそれぞれ 120，Scoring Guard の値が 150 となるようにライン
アップを構築することが最適であることが示された．クラスタ確率のみを使用した場合と
比べ，最適なラインナップにおいて Spot Up Shooter が採用され，Stretch Center の値は
0 となった．

表 16: 調整済み Offensive Rating 予測値上位 5 位のラインナップ (クラスタ確率 ×Player OFF

RTG 使用)
Solid

Guard

Utility

Forward

High Usage

Forward

Spot Up

Shooter

Stretch

Center

Traditional

Center

Scoring

Guard

予測値
(OFF RTG)

150 30 0.00 120 0 120 120 117.18

150 30 0.00 120 0 150 120 117.18

150 60 0.00 120 0 120 120 117.16

150 60 0.00 120 0 150 120 117.16

30 30 0.00 270 150 0 120 117.13

ディフェンスでは，表 17 のように Rim Protector の値以外 0 という極端な結果となっ
てしまった．実際の試合において同じポジションの選手のみでラインアップを構築するこ
とは考えにくく，スキルを考慮した場合のポジション間の相互作用を十分に示すことがで
きなった．
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表 17: 調整済み Defensive Rating 予測値上位 5 位のラインナップ (クラスタ確率 ×Player DEF

RTG 使用)
Average

Outside Defender

Aggressive

Defender

Rim

Protector

Versatile

Defender

Elite Outside

Defender

予測値
(DEF RTG)

0 0 450 0 0 75.32

0 0 480 0 0 75.32

0 0 510 0 0 75.32

0 0 540 0 0 75.32

0 0 570 0 0 75.32

次に，実際のチームを対象に予測モデルを用いてオフェンスラインアップを構築する．
対象とするチームは 2020-21 シーズンの Los Angeles Lakers とし，チームを代表するス
ター選手である Lebron James と Anthony Davis を中心選手として固定する．ラインアッ
プ構築の条件として，同シーズンの全チームの選手を対象とし，そのうち同シーズンの
オールスターに選出された選手は対象外とした．仮に，スター選手ばかりをラインナップ
に採用した場合，予測値が高くなるのは当然であり，実際のチームにはスター選手は約 2

人程度しか在籍していないためである．上記 2 選手の OFF RTG を使用し，予測モデル
において最も高い値となるように選手を選択すると，表 18 に示すようなラインアップと
なった．実際のシーズン中に Los Angeles Lakers において最も高い OffRTG となったラ
インアップデータの値は 109.80 であったため，予測モデルを使用して構築されたライン
アップの方が，100 ポゼッションあたり 3.38 点多く得点することが示された．

表 18: 2020-21 シーズン Los Angeles Lakers のラインアップ構築
選手 1 選手 2 選手 3 選手 4 選手 5 予測値 (OFF RTG)

L. James A. Davis M. Brogdon J. Brown J. Collins 113.18

5 考察
5.1 まとめ
本論文では，ポジションをオフェンスとディフェンスに分けてクラスタリングを行う事
で，それぞれ特徴の異なる新ポジションの提案を目指し，クラスタリング分析を行った．
クラスタリングの結果，オフェンスとディフェンスどちらにおいても従来のポジションに
比べ，より選手の特徴を詳細に示すことができた．Stretch Center のような特徴を持つ選
手は汎用性が高く，現代の NBA では重要なポジションであるが，Traditional Center や
Solid Guard のような従来のポジションの特徴に近い場合でも，OffRTG に効いているこ
とが示された．
選手のスキルをクラスタ確率と共に使用した場合，クラスタ確率のみ使用した場合と異
なる結果となった．これは，クラスタ確率のみではポジションのおよその相性しか示せて
おらず，スキルの上下を考慮することで相性が変化したためであると考えられる．また，
ディフェンスではスキルを考慮した場合，ラインナップに Rim Protector を 4, 5 人分取り
入れることで DefRTG が最も良い予測値となってしまった．これは，ディフェンスポジ
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ション間の相互作用を正確に示すことができなかったためであると考えられる．オフェン
スラインナップの作成では，予測モデルに基づき，実際のチームから新たに最適なライン
ナップを作成し，OffRTG を上昇させることができた．これにより，選手の移籍やチーム
戦術の提案にも繋がる結果が得られた．

5.2 課題
最後に本論文の課題を述べる．ディフェンスにおいて，スキルとクラスタ確率を使用し
た予測モデルの構築では，扱うスタッツの数が 11 個と少なかったため十分にディフェン
ススキルを評価できなった．それにより，ポジション間の相互作用が示されず，極端な値
の予測モデルとなってしまった．より詳細なディフェンスのスタッツを追加することで精
度の向上につながると考えられる．
本論文では，オフェンスとディフェンスに分けてポジションを提案したが，それらを組
み合わせて 1 つの予測モデルを作成することができれば，より実戦的で使いやすくするこ
とができると考えられる．
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