

The Electronic Properties of Chlorine in GaN: An Ab Initio Study

Yusuke Fujii, Ruggero Micheletto, and Giovanni Alfieri*

Chlorine-based reactive ion etching (RIE) is a fundamental processing step for the manufacturing of GaN semiconductor devices. As impurities can be unintentionally incorporated in the crystal during processing, the electronic properties of chlorine in GaN are investigated. Density functional theory calculations of substitutional Cl and related complexes (with a vacancy or a dopant) are carried out. It is found that Cl and its complexes explain the reported effects of Cl RIE-treated GaN on hole density and ohmic contact resistivity.

1. Introduction

Gallium nitride (GaN) has a wide bandgap (E_{gap}) and a high electron saturation velocity that make it the ideal candidate for high-voltage and high-frequency applications.^[1] In addition, GaN has also a direct E_{gap} that allows the production of light-emitting diodes (LEDs). Furthermore, even if homoepitaxial GaN is still expensive, heteroepitaxial (Si, SiC, or Al₂O₃) GaN is a valid alternative for the realization of cost-competitive power electronics.^[1]

Yet, the development of GaN optoelectronic devices cannot leave out of consideration the study of electrically active point defects. These are known to alter the functionality of devices; therefore, it is important to study defects to be able to control and/or limit their presence. Apart from intrinsic defects like the nitrogen vacancy (V_N) , which hinders the formation of p-type GaN,^[2-4] impurities can also be detrimental for applications. This is the case of carbon and oxygen which are unintentionally incorporated during growth. The electronic properties of carbon, which sits at an N-site (C_N), and its related complexes^[5–7] have been thoroughly studied in the past. C_N was found to be responsible for current collapse^[8] and for the yellow luminescence (YL).^[9] Oxygen (O_N), which behaves as a shallow donor, is known to decorate dislocations^[10] and diffuse in the epilayer from a sapphire substrate.^[11] In the latter case, it leads to p-type doping passivation due to the formation of neutral complexes with Mg_{Ga} .^[12]

Y. Fujii, Prof. R. Micheletto Department of Materials System Science Yokohama City University Yokohama 236-0027, Japan Dr. G. Alfieri ABB Power Grids Research Segelhofstrasse 1A, 5405 Baden-Daettwil, Switzerland E-mail: giovanni.alfieri@hitachi-powergrids.com

D The ORCID identification number(s) for the author(s) of this article can be found under https://doi.org/10.1002/pssb.202000303.

DOI: 10.1002/pssb.202000303

Impurities can also be unintentionally incorporated during processing steps like etching. Dry etching is a fundamental step for the realization of semiconductor devices and, in the case of GaN, it is typically favored over wet etching for its selectivity.^[13] In particular, Cl-based reactive ion etching (RIE) and inductive coupled plasma (ICP) RIE are chosen because they yield higher etching rates than H-based RIE.^[13]

Despite Cl-based dry etching being useful for mesa and termination etching,

this process was found to have an impact on the electronic properties of GaN. Deep levels in $E_{\rm gap}$, affecting the leakage current and the breakdown voltage, were observed in both dry-etched n- and p-GaN.^[14–16] A decrease by two orders of magnitude of carrier concentration was found in Cl-based treated p-type GaN.^[17] In addition, controversial reports on how Cl-RIE affects n-GaN ohmic contact resistivity (ρ_c) are present in the literature: while some authors have shown that Cl-RIE decreases ρ_c ,^[18,19] some other studies have shown that the presence of gallium vacancies^[20,21] and the formation of oxides on the surface^[22,23] increase ρ_c . Due to these effects, it is straightforward to ask what the role of Cl, which is used in the RIE plasma, is on the electronic properties or GaN.

To answer this question, we conducted a theoretical investigation, by means of density functional theory, of the electronic properties of substitutional chlorine, both isolated and complexed with a vacancy or a dopant, in wurtzite GaN.

2. Theoretical Methodology

The siesta code^[24] was used for conducting density functional theory calculations, using Troullier-Martins' norm-conserving pseudopotentials^[25] to account for the effect of core electrons and the Ceperley-Alder form of local density approximation (LDA) for the exchange correlation potential.^[26] A double-C plus polarization was used as atomic orbitals basis set throughout the calculations. For the Ga atoms the d-orbital electrons were treated as valence electrons. The equilibrium configurations of the pristine and defected 96-atom GaN supercells $(2\sqrt{3}a \times 3a \times 2c, a = 3.184 \text{ Å}, c = 5.184 \text{ Å})$ were obtained by relaxing the atomic coordinates with a conjugate gradient algorithm, until the maximum atomic forces were less than $0.025 \text{ eV} \text{ Å}^{-1}$ and the stress tensor less than 0.5 GPa. The charge density was projected onto a real space grid with an equivalent cutoff of 375 Ry and eight Monkhorst-Pack special k-points^[27] were used. The a = b and c lattice constants were both 1% larger than the experimental value with a direct bandgap of 2 eV.

The formation energy (E_{form}) of a defect with charge state q was calculated using the followng equation

$$E_{\rm form}^{q} = E_{\rm tot}^{q} - E_{\rm tot}^{\rm bulk} - \sum_{i} n_{i} \mu_{i} + q(E_{F} + E_{V} + \Delta \nu_{0/b}) + E_{\rm corr}(q)$$
 (1)

 E_{tot}^q , n_i , μ_i , E_F , E_V , $\Delta \nu_{0/b}$, and E_{corr} are the total energy (for the defective or pristine supercell), the number of added ($n_i > 0$) or removed ($n_i < 0$) *i*-atoms, the chemical potential of the *i*-atom, the Fermi energy, the top of the valence band, the electrostatic potential alignment term (between the bulk and defective supercells), and the finite-size correction term, respectively. This last one (E_{corr}) was calculated following both the Makov–Payne method^[28] (hereafter MP) and the one reported by Freysoldt et al.^[29] (hereafter FNV), as implemented in a previous study.^[30]

As it is known that variations of $E_{\rm form}$ (and thus of charge transition levels) depend on the choice of the functional, we applied a correction scheme based on the alignment of electrons and chemical potential of the atomic species, as in a previous study.^[31] This correction is applied to the FNV results and will be labeled as FNV*.

Calculation of μ_i was conducted as described in a previous study.^[32] μ_{Ga} and μ_N were calculated using a Ga supercell and N₂ molecule, respectively. For the FNV* scheme, μ_i was corrected using Equation (14) of a previous study^[31] and using the hybrid functional (HSE) value of the formation enthalpy (-1.34 eV). For μ_{Cl} , we used the LDA value. However, the optimized geometry of the Cl₂ molecule, as obtained by siesta, was also used to calculate μ_{Cl} with a B3LYP functional (kinetic energy cutoff of 180 Ry).^[33]

3. Validation of the Methodology

To begin with, we conducted the calculation of the electronic properties of two intrinsic defects, the $V_{\rm N}$ and $V_{\rm Ga}$. This was done to evaluate the corrections to $\mu_{\rm N}$, $\mu_{\rm Ga}$, and $E_{\rm V}$. Once these corrections were obtained, we tested the FNV* scheme on two defect complexes, one related to $V_{\rm N}$ and another to $V_{\rm Ga}$.

Figure 1 shows the results of the LDA calculations carried out on V_N. Our LDA calculations predict the negative-U behavior of $V_{\rm N}$.^[3,4] The negative-U behavior (with U being the electronelectron repulsion) occurs when the (q - 1/q) charge state of a defect lies closer to E_V than the (q/q + 1) one.^[34,35] As a consequence, only a (q - 1/q + 1) charge state is found in E_{gap} . The MP correction (Figure 1a) does not show V_N (+/3+) in the Kohn-Sham E_{gap} . As a matter of fact, this level is resonant in the valence band (E_V -0.30 eV) and so are the singly positive and negative charge states, which are resonant in the conduction band (shadowed in Figure 1a). When the FNV correction was used, we obtained similar results to MP with $V_{\rm N}(+/3+)$ predicted at $E_V - 0.52 \,\text{eV}$. Figure 1b shows the results of E_{form} calculated using the FNV* correction. By lowering E_V relative to $V_{\rm N}(+/3+)$, we adjust the charge transition level position in E_{gap} . μ_{N} is corrected to match the E_{form} of $V_{\text{N}}(+/3+)$ reported by Diallo et al.^[36] The corrected values of $\mu_{\rm N}$ are $-270.8 \le \mu_{\rm N} \le$ $-269.5 \text{ eV} \text{ atom}^{-1}$ (from $-271.2 \le \mu_{\text{N}} \le -269.8 \text{ eV} \text{ atom}^{-1}$). We point out that, by using a bigger supercell (144 atoms), the variation of E_{form} is $\leq 0.1 \text{ eV}$.

Figure 1. Formation energy plot of the V_N calculated with the a) MP and b) FNV* correction schemes. Red (black) line is for the N (Ga)-rich case. The shadowed area represents the limit of the Kohn-Sham E_{gap} .

We repeat analogous calculations for V_{Ga} (Figure 2). The MP correction (Figure 2a) does not show any donor level in the Kohn-Sham E_{gap} ($E_{\text{V}} - 0.14 \text{ eV}$) and leads to the single, double, and triple negative charge state transition levels at $E_{\text{V}} + 0.33 \text{ eV}$, $E_{\text{V}} + 1.06 \text{ eV}$, and $E_{\text{V}} + 2.08 \text{ eV}$, respectively. Using the FNV correction, the single donor level of V_{Ga} is located at $E_{\text{V}} - 0.31 \text{ eV}$ and the single, double, and triple acceptors at $E_{\text{V}} + 0.25 \text{ eV}$, $E_{\text{V}} + 0.88 \text{ eV}$, and $E_{\text{V}} + 0.186 \text{ eV}$, respectively. By lowering E_{V} relative to $V_{\text{Ga}}(0/+)$,^[36] we found that the acceptor levels agree well with HSE results^[3,36] to within 0.2 eV (Figure 2b). The same occurs for E_{form} ($-1808.5 \le \mu_{\text{Ga}} \le -1807.2 \text{ eV}$ atom⁻¹).^[36]

Having obtained the corrected values of μ_N , μ_{Ga} , and E_V , we then proceed to validate the FNV* scheme used in this study. To do this, we calculated the charge transition levels of the Mg_{Ga} V_N and O_NV_{Ga} complexes.

Figure 2. Formation energy plot of the V_{Ga} calculated with the a) MP and b) FNV* correction schemes. Red (black) line is for Ga (N)-rich case.

The (0/2+) charge transition level of $Mg_{Ga}V_N^{[2]}$ is found resonant in the valence band at $E_V - 0.19$ and $E_V - 0.39$ for the MP and FNV correction scheme, respectively. To correct the charge state transition level position in E_{gap} , we employed the value of E_V used to adjust the $V_N(+/3+)$ transition level. μ_{Mg} is calculated using a Mg₃N₂ supercell^[2] and used to compute the E_{form} of Mg(-/0). μ_{Mg} was corrected so that E_{form} of Mg(-/0) matched the HSE value reported in the literature.^[2,3] With E_V and μ_{Mg} , we find that Mg_{Ga} V_N (0/2+) is located at $E_V + 0.64$ eV, 0.2 eV lower than the value reported in a previous study^[2], and the E_{form} is in good agreement with a previous study.^[2]

VANCED

www.advancedsciencenews.com

The FNV (MP) correction scheme shows that $O_N V_{Ga}(0/+)$, $O_N V_{Ga}(-/0)$, and $O_N V_{Ga}(2-/-)$ are found at $E_V - 0.30(-20)$ eV, $E_V + 0.48(0.52)$ eV, and $E_V + 1.32(1.68)$ eV, respectively. The adjusted electron chemical potential for V_{Ga} and the adjusted value of $\mu_0^{[37]}$ were used to calculate the charge state transition level positions and their E_{form} . The single donor, single, and double acceptors are found at $E_V + 0.96$ eV, $E_V + 1.74$ eV, and $E_V + 2.5$ eV, respectively. These levels are in agreement up to <0.20 eV with those obtained by HSEs, with the exception of

Table 1. Charge state transition levels of the V_N , V_{Ga} , and $O_N V_{Ga}$, calculated using the MP, FNV, and FNV* schemes. For $O_N V_{Ga}$, the correction to E_V is the one taken from V_{Ga} . Numerical values indicate $E_V + E_t$ and units are in eV. In brackets, the difference between the values obtained by HSE calculations and those of the present study is shown.

Defect	MP	FNV	FNV*
V _N (+/3+)	-0.30	-0.52	0.48 (0)
V _N (0/+)	2.06	2.42	3.13 (-0.03)
V _{Ga} (0/+)	-0.14	-0.31	0.97 (0)
$V_{Ga}(-/0)$	0.32	0.25	1.51 (-0.17)
V _{Ga} (2-/-)	1.07	0.88	2.14 (-0.16)
V _{Ga} (3-/2-)	2.08	1.86	2.95 (0.15)
$Mg_{Ga}V_{N}(0/2+)$	-0.19	-0.39	0.64 (-0.20)
$O_N V_{Ga}(0/+)$	-0.20	-0.30	0.96 (-0.14)
$O_N V_{Ga}(-/0)$	0.52	0.48	1.74 (-0.06)
O _N V _{Ga} (2-/-)	1.68	1.32	2.58 (0.28)

the double donor level, which is 0.28 eV higher than the hybrid counterpart.^[37,38] Their $E_{\rm form}$ also agrees reasonably well with the literature.^[37]

A summary of the above results is shown in Table 1.

4. Results and Discussion

To find out whether Cl sits at a N–(Cl_N) or at a Ga-site (Cl_{Ga}), we calculated the E_{form} of Cl_N and Cl_{Ga}. First, we focused on Cl_N, as shown in **Figure 3**. After geometry optimization, the Cl–N bond length ranges between 2.3 and 2.4 Å and Cl_N has a tetrahedral symmetry. The ten electrons (three from V_N and seven from Cl) occupy two singlets and one triplet state. Inspection of the highest occupied molecular orbital (HOMO) reveals a fully occupied a_1 state (Figure 3a), meaning that Cl_N is a double donor.

Analysis of $E_{\rm form}$, with the MP correction (Figure 3b), shows that $\rm Cl_N$ is a double donor for each value of $E_{\rm F}$ in the Kohn-Sham $E_{\rm gap}$. Two transition levels (doubly and singly positive charge states) are found resonant in the conduction band. The same occurs after application of the FNV correction.^[39] Using the $E_{\rm V}$ corrected for $V_{\rm N}(+/3+)$, the $E_{\rm form}$ of $\rm Cl_N$ shows only one charge state transition level in $E_{\rm gap}$ (Figure 3c), at $E_{\rm V} + 3.0$ eV. The use of $\mu_{\rm Cl}$ calculated using a HSE^[33] results in a higher $E_{\rm form}$ of 0.4 eV. This applies also to the results shown in the remainder of this study.

Analogous calculations were also conducted on Cl_{Ga} . Geometry optimization results in a severe change of the Cl–N bond length, with the shortest being 1.6 Å and the longest 2.6 Å. As a result, Cl_{Ga} has a C_s symmetry (**Figure 4**a), meaning that the 12 electrons found in the defect molecule model are accommodated in singlet levels. The analysis of the E_{form} with the MP correction reveals the presence of two charge states in the Kohn-Sham E_{gap} (Figure 4b). The singly and doubly negative are found at $E_V + 0.60 \text{ eV}$ and $E_V + 1.22 \text{ eV}$, respectively. To conduct FNV* correction (Figure 4c), we use the value of E_V corrected for $V_{Ga}(0/+)$. This leads to the presence of four charge transition levels in E_{gap} at $E_V+0.76 \text{ eV}$, $E_V+1.56 \text{ eV}$, $E_V+2.01 \text{ eV}$, and $E_V+2.70 \text{ eV}$ for $Cl_{Ga}(+/2+)$, $Cl_{Ga}(0/+)$, $Cl_{Ga}(-/0)$, and $Cl_{Ga}(2-/-)$, respectively.

Figure 3. a) Isosurfaces of the calculated wave function for Cl_N (0.09 e bohr⁻³). The red (green) isosurface represents the positive (negative) values of the wave function. Formation energy plot of Cl_N calculated with the b) MP and c) FNV* correction schemes. Red (black) line is for N (Ga)-rich case. Ga (N) atoms are yellow (blue), whereas Cl is light green.

Figure 4. a) Isosurfaces of the calculated wave function for Cl_{Ga} (0.03 e bohr⁻³). The red (green) isosurface represents the positive (negative) values of the wave function. Ga (N) atoms are yellow (blue), whereas Cl is light green. Formation energy plot of Cl_{Ga} calculated with the b) MP and c) FNV* correction schemes. Red (black) line is for N (Ga)-rich case.

As shown in Figure 3c and 4c, the most stable configuration, for most of the $E_{\rm F}$ -level values, is ${\rm Cl}_{\rm N}$. ${\rm Cl}_{\rm Ga}$ has a lower $E_{\rm form}$ than ${\rm Cl}_{\rm N}$ ($\approx 0.5 \,{\rm eV}$) only when 3.2 eV $< E_{\rm V} + E_{\rm F} \leq$ 3.4 eV, that is, when GaN is heavily n-type doped.

As Cl preferably occupies N-site for a wider range of $E_{\rm F}$ values, it is straightforward to analyze the Cl_NV_{Ga} complex (**Figure 5**). We considered the parallel configuration, that is, the defect is parallel to the *c*-axis. This is because it was seen that for the C_NV_{Ga}, no significant difference of $E_{\rm form}$ was present between the parallel and perpendicular configurations.^[6] Geometry optimization results in a C_{3v} symmetry, meaning that the seven electrons (five of $V_{\rm Ga}$ and two of Cl_N) can be found in two singlets (*a*₁) and one doublet (*e*). We find that the spare electron occupies one doublet as the HOMO is an *e* state (Figure 5a). As Lyons et al.^[38] have shown, the higher the number of donors binding to $V_{\rm Ga}$, the lower the number of acceptors of the resulting complex. This means that if the analogy with the O_NV_{Ga}H complex is correct,^[38] the Cl_NV_{Ga} complex will give rise to one donor or one acceptor level (or both) in $E_{\rm gap}$.

Figure 5b shows the results of our calculations for the $Cl_N V_{Ga}$ complex, with the MP scheme. We find a donor level at $E_V + 0.21 \text{ eV}$ and an acceptor level at $E_V + 1.28 \text{ eV}$. Another

acceptor level, doubly negative, is resonant in the conduction band, at E_V + 2.8 eV. The FNV shows the singly and doubly acceptor levels at E_V + 0.58 eV and E_V + 1.16 eV, respectively. We also find a donor level at E_V + 0.11 eV. To apply the FNV* scheme, similarly to what we have done for the O_NV_{Ga} complex, we consider the corrected E_V of $V_{Ga}(0/+)$. By doing so, we obtain $Cl_N V_{Ga}(0/+)$ at E_V + 1.61 eV, whereas the negative one is at E_V + 2.70 eV (Figure 5c).

As the Cl_{Ga} is more stable than Cl_N , in heavily doped n-GaN, we also examined the $Cl_{Ga}V_N$ complex. Similarly to Cl_NV_{Ga} , this complex was also studied in the parallel configuration. Geometry optimization, of the neutral and charged defects, shows that the Cl atom leaves the Ga-site and moves into the N-site, that is. $Cl_{Ga}V_N$ transforms into Cl_NV_{Ga} . An analogous transformation was reported also in rare-earth-doped $GaN^{[40]}$ and demonstrates that, although Cl_{Ga} might be stable for a limited range of E_F values, it does not form complexes with native defects.

Next, we evaluate the effects of Cl on GaN dopant species. To do this, we consider how Cl_N affects Mg, which is the p-type dopant of choice for GaN and sits at a Ga-site.^[41] The same cannot be done for Cl_{Ga} , as the n-type dopant is Si and also sits at a Ga-site. We investigated the Cl_NMg_{Ga} complex (Figure 6) in the

Figure 5. a) Isosurfaces of the calculated wave function for CI_NV_{Ga} (0.09 e bohr⁻³). The red (green) isosurface represents the positive (negative) values of the wave function. Red translucent sphere represents V_{Ga} . Formation energy plot of CI_N calculated with the b) MP and c) FNV* correction schemes. Red (black) line is for the N (Ga)-rich case.

Figure 6. a) Isosurfaces of the calculated wave function for Cl_NMgGa (0.09 e bohr⁻³). The red (green) isosurface represents the positive (negative) values of the wave function. Mg atom is red. Formation energy plot of Cl_N calculated with the b) MP and c) FNV* correction schemes. Red (black) line is for the N (Ga)-rich case.

perpendicular configuration (the Cl–Mg bond is perpendicular to the *c*-axis), because the Si_{Ga}C_N defect has a slightly lower E_{form} in such a configuration.^[7] Based on the fact that O_N is a single donor, it was found that the O_NMg_{Ga} complex is neutral.^[12] This suggests that Cl_NMg_{Ga} could be a single donor. Geometry optimization reveals that the Cl_NMg_{Ga} complex has a C₁ symmetry, meaning that of the seven electrons of this complex (five from Mg_{Ga} and two from Cl_N), there will be an unpaired electron in a singlet level (Figure 6a).

Using the MP correction scheme, we see that Cl_NMg_{Ga} is a single donor throughout the Kohn-Sham E_{gap} (Figure 6b). The same occurs after applying the FNV correction. To apply the FNV* scheme, we point out that as V_{Ga} was used as a reference for Cl_NV_{Ga} complex, in the present case we will use the Mg_{Ga} defect as a reference. We adjust E_V and μ_{Mg} to match the charge transition level and E_{form} of Mg(-/0) calculated by HSE.^[2,3] Then, these values are used for the Cl_NMg_{Ga} complex (Figure 6c) which is found to be a single donor throughout the Kohn-Sham E_{gap} .

A summary of the Cl-related charge state levels calculated in this study is shown in **Table 2**.

As our results show that the electronic properties of Cl can have a significant impact on GaN electronic devices. The reported decrease by two orders of magnitude of the carrier concentration in Cl-based-treated p-type GaN was attributed to the formation of $Mg_{Ga}V_N$ complexes.^[17] However, this defect might already be present in the as-grown p-type material acting as a compensating center. As our results show, Cl_N , Cl_NV_{Ga} , and Cl_NMg_{Ga} behave as donors in p-type GaN. Due to their low E_{form} , Cl_N and Cl_NMg_{Ga} might also be quite abundant, meaning that their presence can significantly reduce the hole density. Cl_NV_{Ga} possesses the

Table 2. Charge state transition levels detected in the present study for the two substitutional (Cl_N and Cl_{Ga}) and complex Cl_NV_{Ga} defects, calculated using the FNV* correction scheme.

	(2-/-)	(-/0)	(0/+)	(+/2+)
Cl _N	_	_	3.0	_
Cl_{Ga}	0.76	1.56	2.01	2.70
CI_NV_{Ga}	_	1.61	2.70	-

highest E_{form} possibly due to the fact that V_{Ga} has a rather high E_{form} in as-grown p-type.^[3] However, high ion fluxes and energies, used during RIE,^[13] might contribute to the formation of V_{Ga} which, binding to Cl, can reduce the hole concentration, possibly causing type conversion.^[13]

Regarding the controversy on the ohmic contact resistivity, its improvement was attributed to the formation of donors, like $V_{\rm N}$ or divacancies $(V_{\rm N}V_{\rm Ga}, V_{\rm Ga}(V_{\rm N})_2)$.^[18,19] However, in n-type GaN, $V_{\rm N}$ is neutral and divacancies are acceptors.^[2,42] In addition, our results support the reported increase of ρ_c , following Cl-RIE. As a matter of fact, if Cl is incorporated in GaN, $Cl_{\rm Ga}$ and $Cl_{\rm N}V_{\rm Ga}$ are acceptors in n-GaN and can lead to donor compensation, thus worsening the ohmic behavior.

Last, we comment on the electron and chemical reservoir method: as described in a previous study,^[31] this is derived from the "marker method." Typically, the charge state transition level position in $E_{\rm gap}$ of a well-localized defect A is corrected by shifting $E_{\rm V}$. This $E_{\rm V}$ is then used to calculate the charge state transition levels of another defect B. No constraints are given on the geometry and/or symmetry of the defects. As the marker method performs best when the wavefunctions of A and B defects have the same symmetry,^[43] the same should apply to a previous study.^[31] The main obstacle to this approach is the difficulty in finding suitable defects calculated by HSE, whose symmetry matches the one under investigation. For instance, even if both $O_{\rm N}V_{\rm Ga}^{[44]}$ and $Cl_{\rm N}V_{\rm Ga}$ have $C_{3\nu}$ symmetry after geometry optimization, the respective highest occupied orbitals do not, as it is a_1 for $O_{\rm N}V_{\rm Ga}^{[44]}$ and e for $Cl_{\rm N}V_{\rm Ga}$.

5. Conclusions

Density functional theory calculations revealed that Cl sits at a N-site and Cl_N behaves as a double donor, in agreement with the fact that O is a single donor. Cl_N -related complexes, with V_{Ga} or Mg_{Ga} , were also found to behave as donors. The presence of these defects, due to possible unintentional incorporation during processing, might explain the observed increase (decrease) of the electron (hole) concentration, reported in dry etched n-(p-) type GaN.

Conflict of Interest

The authors declare no conflict of interest.

Keywords

chlorine, density functional theory, dry etching, point defects

Received: June 5, 2020 Revised: August 14, 2020

Published online:

- [1] Y. Zhang, A. Dadgar, T. Palacios, J. Phys. D: Appl. Phys. 2018, 51, 273001.
- [2] Q. Yan, A. Janotti, M. Scheffler, C. G. van de Walle, Appl. Phys. Lett. 2012, 100, 142110.
- [3] G. Miceli, A. Pasquarello, Microelectron. Eng. 2015, 147, 51.
- [4] J. L. Lyons, C. G. van de Walle, npj Comput. Mater. 2017, 3, 12.
- [5] J. L. Lyons, A. Janotti, C. G. van de Walle, Appl. Phys. Lett. 2010, 97, 152108.
- [6] M. Matsubara, E. Bellotti, Phys. Rev. B 2017, 121, 195701.
- [7] M. Matsubara, E. Bellotti, Phys. Rev. B 2017, 121, 195702.
- [8] M. J. Uren, M. Caesar, S. Karboyan, P. Moens, P. Vanmeerbeek, M. Kuball, IEEE Electron Device Lett. 2015, 36, 826.
- [9] S. O. Kucheyev, M. Toth, M. R. Phillips, J. S. Williams, C. Jagadish, G. Li, J. Appl. Phys. 2002, 91, 5867.
- [10] P. P. Michalowski, S. Zlotnik, M. Rudzinski, Chem. Commun. 2019, 55, 11539.
- [11] R. Jakiela, E. Dumiszewska, P. Caban, A. Stonert, A. Turos, A. Barcz, *Phys. Status Solidi C* 2011, 8, 1513.
- [12] A. F. Wright, J. Appl. Phys. 2005, 98, 103531.
- [13] S. J. Pearton, R. J. Shul, F. Ren, MRS Internet J. Nitride Semicond. Res. 2000, 5, 11.
- [14] M. Kato, K. Mikamo, M. Ichimura, M. Kanechika, O. Ishiguro, T. Kachi, J. Appl. Phys. 2008, 103, 093701.
- [15] K. J. Choi, H. W. Jang, J. L. Lee, Appl. Phys. Lett. 2003, 82, 1233.
- [16] C. Y. Lee, H. Sekiguchi, H. Okada, A. Wakahara, Jpn. J. Appl. Phys. 2012, 51, 076503.
- [17] J. M. Lee, K. S. Lee, S. J. Park, J. Vac. Sci. Technol. 2004, 22, 479.
- [18] A. T. Ping, Q. Chen, J. W. Yang, M. Asif Khan, I. Adesida, J. Electron. Mater. 1998, 27, 261.
- [19] T. Fujishima, S. Joglekar, D. Piedra, H. S. Lee, Y. Zhang, A. Uedono, T. Palacios, *Appl. Phys. Lett.* **2013**, *103*, 083508.

- [20] S. J. Chua, H. W. Choi, J. Zhang, P. Li, Phys. Rev. B 2001, 64, 205302.
- [21] Y. J. Han, S. Xue, W. P. Guo, C. Z. Sun, Z. B. Hao, Y. Luo, Jpn. J. Appl. Phys. 2003, 42, 6409.
- [22] A. A. Kobelev, Y. V. Barsukov, N. A. Andrianov, A. S. Smirnov, J. Phys.: Conf. Ser. 2015, 586, 012013.
- [23] L. K. Li, L. S. Tan, E. F. Chor, J. Cryst. Growth 2004, 268, 499.
- [24] J. M. Soler, E. Artacho, J. D. Gale, A. Garcia, J. Junquera, P. Ordejon, D. Sanchez-Portal, J. Phys.: Condens. Matter 2002, 14, 2745.
- [25] N. Troullier, J. L. Martins, Phys. Rev. B **1991**, 43, 1993.
- [26] D. M. Ceperley, B. J. Alder, Phys. Rev. Lett. 1980, 45, 566.
- [27] H. Monkhorst, J. D. Pack, Phys. Rev. B 1976, 13, 5188.
- [28] G. Makov, M. C. Payne, Phys. Rev. B 1995, 51, 4014.
- [29] C. Freysoldt, J. Neugebauer, C. G. van de Walle, Phys. Rev. Lett. 2009, 102, 016402.
- [30] M. H. Naik, M. Jain, Comput. Phys. Commun. 2018, 226, 114.
- [31] C. Freysoldt, B. Lange, J. Neugebauer, Q. Yan, J. L. Lyons, A. Janotti, C. G. van de Walle, *Phys. Rev. B* **2016**, *93*, 165206.
- [32] D. F. Hevia, C. Stampfl, F. Viñes, F. Illas, *Phys. Rev. B* 2013, *88*, 085202.
- [33] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. Fabris, G. Fratesi, S. de Gironcoli, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, R. M. Wentzcovitch, *J. Phys.: Condens. Matter* **2009**, *21*, 395502.
 [34] G. D. Watkins, J. R. Troxell, *Phys. Rev. Lett.* **1980**, *44*, 593.
- [35] J. Coutinho, V. P. Markevich, A. R. Peaker, J. Phys.: Condens. Matter
- **2020**, *32*, 323001. [36] I. C. Diallo, D. O. Demchenko, *Phys. Rev. Appl.* **2016**, *6*, 064002.
- [37] Z. Xie, Y. Sui, J. Buckeridge, A. A. Sokol, T. W. Keal, A. Walsh, *Appl. Phys. Lett.* **2018**, *112*, 262104.
- [38] J. L. Lyons, A. Janotti, C. G. van de Walle, Phys. Status Solidi B 2015, 252, 900.
- [39] C. Freysoldt, J. Neugebauer, C. G. van de Walle, Phys. Status Solidi B 2011, 248, 1067.
- [40] S. Sanna, W. G. Schmidt, T. Frauenheim, U. Gerstman, Phys. Rev. B 2009, 80, 104120.
- [41] G. Miceli, A. Pasquarello, Phys. Rev. B 2016, 93, 165207.
- [42] H. Li, M. Huang, S. Chen, J. Semicond. 2020, 41, 032104.
- [43] N. Fujita, Ph.D. dissertation, University of Exeter, 2009.
- [44] A. Alkauskas, C. E. Dreyer, J. L. Lyons, C. G. Van de Walle, *Phys. Rev. B* 2016, *93*, 201304(R).