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Abstract—Recognizing seismic waves immediately is very
important for the realization of efficient disaster prevention.
Generally, these systems consist of a network of seismic detec-
tors that send real time data to a central server. The server
elaborates the data and attempts to recognize the first sign of
an earthquake. The problem with this approach is that it exists
a critical trade-off between sensitivity of the system and error
rate. To overcame this problem, an artificial neural network based
intelligent learning system can be used. However, conventional
supervised ANN systems are difficult to train, CPU intensive
and prone to false alarms. To surpass these problems, here we
attempt to use a next-generation unsupervised cortical algorithm
hierarchical temporal memory (HTM). This novel approach
does not learn particular waveforms, but adapts to continuously
fed data reaching the ability to discriminate between normality
(seismic sensor background noise in no-earthquake conditions)
and anomaly (sensor response to a jitter or an earthquake). Main
goal of this study is to test the ability of the HTM algorithm to
be used to signal earthquakes automatically in a feasible disaster
prevention system. We describe the methodology used and give
the first qualitative assessments of the recognition ability of the
system. Our preliminary results show that the cortical algorithm
used is very robust to noise and that it can successfully recognize
synthetic earthquake-like signals efficiently and reliably.
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I. INTRODUCTION

This is a brief report on the setup of a Hierarchical Tempo-
ral Memory (HTM) cortical model for real-time detection of
seismic waves. Generally, early detection of dangerous seismic
phenomena can be done by hybrid methodology, like on-line
analysis of amplitude (sta/lta ratio) [1]. However, this approach
is subject to a high rate of misses and false alarm. Errors are
caused by human induced spurious signals due to automotive
traffic, local mechanical disturbances or other phenomena.
To reduce errors it is necessary to distinguish between these
unwanted signals and real seismic waves embedded in noise.
This can be done with an intelligent software able to learn the
shape of a natural seismic and recognize it from a background
of noise and human-induced disturbances. For this purpose,
artificial neural networks have been proposed. These networks
are able, if properly trained by trains of data with examples
of real seismic waves and noises, to classify wave shapes and
deduce if they are dangerous seismic waves or innocuous arti-
ficial disturbances [2]. However, the training of these networks
is difficult and precision of classification is still low [3]–[5].

Fig. 1. Top panel: The synthetic seismic waveform fed to the HTM model.
This is made by a uniform random acceleration signal between -1 and 1 and
sporadic jitters. These are synthesized by (1) with a probability p = 0.005,
that corresponds, on average, once every 200 time steps. Bottom panel: The
anomaly score output of the unadapted model. This plot shows the first 1200
points given to the network. In this initial phase, the cortical network is not
adapted to the signal and seems to identify the instrumental noise as signal
anomaly. The score keeps significantly higher than zero, with variable values
all along the plot. Overall, the network looks incapable to reliably distinguish
the simulated seismic waves (for example at about t = 400, t = 600 and
t = 750) from the simulated background noise. Time t is an arbitrary sample
interval here, in a real experiment this interval will be the integration time of
the seismic sensor.

To overcame these problems, we test here an anomaly-
detection unsupervised algorithm based on biological plausible
cortical structure. These models are developed on a new
theoretical framework that construct a hierarchical temporal
memory system able to learn a sequence of data that is
fed continuously to the input. These HTM systems perform
similarly to other sequence learning algorithms like autore-
gressive moving averages, feedforward neural networks and
recurrent neural networks, but have the advantage to be ready
for continuous online learning and are inherently specialized
for anomaly detection.

The seismic sensors will feed continuously data to the
network. The data are synthetic, generated by an algorithm
in order to represent a combination of instrumental noise and
human generated jitters (spurious signals like people walking
in the room nearby the sensor, slamming doors, traffic nearby,
etc.). The cortical algorithm is fed continuously with this data
that will be learned as the normality by the system. Our hope
is that deviation from this normality (an earthquake) will result
in an anomaly signal by the HTM. This approach has the
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advantage that we do not need training, the network will learn
by itself what is normal and what it is an anomaly in a unsuper-
vised way. Since we plan to realize a network of sensors placed
in disparate places, an HTM network will learn specific local
disturbances, whereas standard supervised methods may need
to be re-calibrated for sensors located in different places. An
HTM network has also the ability to predict future evolution of
the signal, it is robust to sensor noise, has fault tolerance and
exhibit good performance without the need for task-specific
tuning [6].

We will describe the methodology we used to generate
synthetic seismic noises and jitters and give references and
description of the HTM cortical algorithm used here, giving
also explicit values of the parameters used for the implemen-
tation of the model. We will show the response of the network
to the continuous feed of seismic acceleration, showing in
details the adaptation process that occurs prior to complete
adaptation. We will demonstrate the ability to recognize with
great precisions jitters of small amplitude, down to levels
comparable to the noise itself. This is clearly impossible with
standard amplitude based method like sta/lta, so we will show
a comparison test with the standard sta/lta method and the
HTM showing outstanding results. Moreover, we will describe
briefly the prediction signal output of the network and use a
real seismic wave form to compare its values with the input
signal.

Fig. 2. After about t = 450.000 time steps (plot shows a window of 1200
of them), the network lowers its anomaly output, and gains an impressive
robustness to noise. The anomaly score drops cleanly to zero when random
noise is constantly fed to the model. This results in distinct identification of
the simulated waves visible in the signal of the top panel at t ≈ 50. Moreover,
small jitter waveforms, barely distinguishable by eye, give rise to net anomaly
score around t = 500 in the bottom panel.

METHOD

For convenience seismic waves were synthesized by a
simple algorithm. This gives us the advantage to experiment
with the HTM network with calibrated and optimal data very
similar to the expected real case scenario signals.

The algorithm simulates both instrumental noises and small
jitters that represent human noises and vibrations in real exper-
imental environments. The instrumental noise is simulated with
a simple uniform distribution of numbers withing the interval
−1, 1. These values are representing normalized accelerations.
Jitters are instead occurring with a probability of p = 0.005
(on average once every 200 points) and are generated summing

up several random sine waves. Overall the signal is obtained
with this formula:

Ac(t) = Σnasin(2πfnt) + ε (1)

where fn are ten frequencies chosen at random in the
interval fmin = 0.01 and fmax = 0.1. The parameter ε is
the uniformly distributed instrumental noise mentioned above.
The jitter duration is fixed to 25 time units and its amplitude
a is a random number between 0 to five.

The calculations are done by a 64 bits Linux (Ubuntu)
machine with 6 Gb Ram and 4 threads CPU. Numenta NuPIC
was installed on the system [7] to setup the HTM cortical
network. NuPIC is a package that implements the HTM
network structure, the user can manipulate the parameters that
regulate its functioning.

To determine the best configuration for our HTM network
we did a parameter search through a swarming process [8]. The
final relevant parameters of our cortical network are the one
in Table I. Notice that those numbers are given in NuPic’s
conventional order and naming. To understand exactly the
meaning of the table, readers should refer to HTM literature
(see provided literature about HTM and NuPic [6], [7]). Usage
of NuPic HTM cortical algorithms will generate parameters
that can compare directly to this table.

TABLE I. CORTICAL ALGORITHM PARAMETERS: THE
PARAMETERS USED BY THE HTM CORTICAL ALGORITHM. THIS TABLE IS
GIVEN AS A GUIDELINE. SP AND TP PARAMETERS ARE GIVE IN THE HTM
CONVENTIONAL ORDER. READERS SHOULD LEARN DETAILS ABOUT THE

FUNCTIONING OF HTM ALGORITHM TO UNDERSTAND FULLY THE
MEANING OF THE VALUES

HTM parameters
alpha = 0.009340 SDRClassifierRegion steps = 1

Verbosity = 0 inference =
anomaly
sensor parameters

clip = True max = 2.0 min = -2.0

n= 118 type =
scalarEncoder w = 21

sp parameters
0.0, 2048, 1, 0, 40, 0.8, 1956, 0, cpp, 0.05, 0.1, 0.1

tp parameters
12, 32, 2048, 0, 0.21, 2048, 0, 128, 32, 9, 20, normal, 1, 0.1, 0.1,
1960, cpp, 0

Fig. 3. The acceleration signal (top) and the corresponding HTM model
predicted value. The HTM algorithm predictions are made one step ahead and
are similar to input values.
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II. RESULTS AND DISCUSSION

Once the network is correctly setup with the parameters
in Table I, the model is run. We process an infinite loop in
which synthetic seismic noise and waveforms are generated
by expression 1, each generated value at each time-step is fed
to the model that uses the multiStepBestPredictions method
to attempt prediction of the next acceleration value. Also the
model outputs an anomalyScore value ranging from 0 to one.
This value represents how the model feels about the current
signal behavior, if it is considered highly anomalous, the score
will be high, otherwise will be low. The anomaly score ranges
from zero to one.

In Fig. 1 are shown the first few thousands time steps of the
model simulation. Each time steps corresponds to an arbitrary
unity of time, in an experiment run with a real seismic sensor
this time-step will correspond to the device integration time.

Clearly the model is not able at this stage to discriminate
between noise and anomalous seismic waves. Those are repre-
sented in Fig. 1 top panel at about t = 600 and t = 750. The
cortical algorithm considers random noise as an anomaly and
other waveforms too. This behavior makes sense since there
is nothing more unpredictable and anomalous than a random
variable and other waveforms are new and unpredictable as
well.

However, if we let the system run for many thousands
cycles, the model begins to adapt to the continuous random
noise, and eventually the anomaly score drops stably to zero
each time a sequence of noise arrives. This shows how the
HTM cortical algorithm has adapted to the random signal
continuously fed to it. This somewhat compares to human
or animal behavior when external disturbances are ignored
if they are repeated regularly. In Fig. 2 lower panel we see
the response of the algorithm to the random seismic signal
after about half a million time steps. As shown in the lower
panel, the model anomaly score to pure noise keeps nearly
zero in a robust and reproducible manner. Interestingly, the
simulated seismic waves instead are recognized as anomalous.
The seismic signals visible in the top panel are correctly
identified with higher anomaly scores. These fluctuations have
their characteristics and are much less common than the
random noise, nevertheless, after the adaptation period, the
model becomes able to distinguish successfully between the
two. Noticeably the duration of anomalous response is slightly
delayed compared to the seismic waves. For example the short
perturbation at about t = 500 in the top panel corresponds to
a longer anomaly score response. This particular waveform
is very small and barely recognizable by eye, nevertheless
the cortical algorithm was able to distinguish it from the
background noise. This is an outstanding behavior that may
prove to be useful for the realization of a disaster prevention
system.

Simultaneously to the anomaly scores, the model outputs
a prediction of the next acceleration value, basing itself to
previous accelerations sequences. In Fig. 3 we show a plot
of the acceleration signal and the corresponding predictions.
Interestingly the prediction signal looks very similar to the
actual waveform, but it precedes the waveform output by one
steps.

We tested the behavior of this predicted value against

Fig. 4. The predictive response of the trained HTM network (red trace) to a
real seismic signal (white). While the network does not respond to instrumental
noise before the onset of the seismic wave, it immediately responds with a
prediction value when the seismic wave is active.

actual seismic recordings (from the Yokohama Strong Seismic
network YKN), we found that the cortical algorithm is able to
robustly recognize real seismic waves from background noises.
When the signal is just background noise, the predicted value
is a constant baseline. When instead the signal shows the onset
of an earthquake, the system is able to anticipate future seismic
accelerations (see Fig. 4), this could be a remarkable feature
in a HTM based disaster prevention system.

To evaluate the model’s ability of prediction we calculated
the error and average it for every time window (1200 time
step points). The graph in Fig. 6 on the top shows this value
over a span of over one million time steps (horizontal axis are
averaged steps, each of them is 1200 simulation time-steps).
The bottom panel of this figure represents the anomaly score
averaged on 1200 points, and a characteristic rise and fall of
this value is noticeable. This graph represents the learning
curve of the cortical algorithm. The first steep drop denotes
the adaptation to the sensor background noise. After about
12.000 time steps the anomaly average is reduced of about
50% the initial value. However, it takes about 250.000 time
steps before the adaptation is complete. After full adaptation,
anomaly stays stably to zero, when no seismic waveforms are
in input. Subsequently the average anomaly seems to drop, but
gets much more volatile, indicating the stronger influence of
the random seismic waveform (see Fig. 6 bottom panel after
t ≈ 200).

We compared the HTM approach with the classic sta/lta
methodology used in standard anti-disaster systems to generate
triggers signals for seismic events. As shown in Fig. 5 when
jitters are small and brief, the sta-lta method fails to recognize
the event, whereas the HTM is able to recognize all of the
event presented even if of amplitude comparable to noise (see
again Fig. 2 for response examples).

III. CONCLUSIONS

We have evaluated for the first time how a cortical HTM
algorithm can be used to recognize anomalies in seismic
signals. We adopted the recent NuPic HTM model [6], [7] and
tested its performances on a simulated earthquake prediction
experiment, we compared its performance with the sta/lta
method and we have shown the prediction ability of the cortical
algorithm with real seismic events from YKN public databases.
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Fig. 5. The comparison of the short-long term average ratio (sta/lta) method
against our cortical algorithm. The green trace shows the sta/lta ratio calculated
over the jitter signals plotted in blu. The black trace is the resulting trigger
signal, only one jitter is recognized with this method (on the right, at about
3500 time steps). The trained HTM network performs much better responding
to 100% of the jitters with a strong anomaly signal (trace not plotted for clarity,
see Fig. 2 for an example).

Fig. 6. In the top panel each points represents the RMS average value for
1200 points of simulation. The value is simply the average difference between
the predicted value and the actual acceleration value for 1200 points (so total
simulation was running for about 600x1200 time steps). The average error
seems to remain stable all along the simulation. The bottom panel shows the
averaged anomaly score calculated in the same fashion. The value is dropping
at the very beginning, then rising again and the decreasing with high volatility.
This particular shape of the average anomaly was reproduced in different
experiments with different random seeds.

In our setup the HTM model is fed continuously data from
a seismic device. For the most of the time, these data are in-
strument background noises, however at a defined probability,

a seismic waveform is added to the noise and we want to
evaluate the HTM model ability to distinguish this from the
background. We found that this system adapt very quickly to
the random fluctuations. After an initial transition time of about
200 thousands time steps, the HTM cortical algorithm was able
to consider the seismic sensor background noise as normality,
lowering its anomaly score to nearly zero. Waveforms instead
were recognized reliably with repeated spikes of high anomaly
score.

Our tests indicate that the HTM system it is robust to noise,
and able to recognize efficiently small anomalies hidden in the
signal. Our study is still qualitative and more investigations
are necessary to characterize fully the performance of the
algorithm as a feasible earthquake detector. However, on the
basis of these results, we speculate that an HTM setup can help
to the realization of robust earthquake detection algorithms and
contribute to intelligent anti-disaster programs.
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