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a b s t r a c t

The complexity of the brain lies in an intricate, not homogeneous structure; however,
it is not clear how important is the heterogeneity at neural and structural levels and
how it may play an important constituent in the brain’s functionality. Here we show
the role of cellular and axonal delay heterogeneity in the brain’s performance. We
simulated, at different scales, the spiking activity on a toroidal network realized in
multiple dimensions with varying degrees of heterogeneity on a network of Izhikevich
neuron models. We found that increasing the heterogeneity and network dimension
improved the robustness and propagation speed of the spiking activity. Our results
demonstrate that the behavior of the spiking activity depends on both the cellular
neural and axonal delay heterogeneity. We developed a simple theoretical framework
compatible with the results of the simulations, putting forward a novel method to
strategically analyze any similar networks.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

It is still unclear whether or not the heterogeneity of the brain can aid the process of the brain‘s performance [1], as
ost previous studies often employed models based on regular structures. Given the heterogeneity of the brain, [2], we

nvestigated the nature and impact of two types of heterogeneity with the realistic neural model using pyNest simulator on
toroidal network; the first heterogeneity refers to the axonal delay variability, a proxy for inter-neuron distance, and the
econd one to the variability of Izhikevich neuron type. The results of this study suggest that the observed heterogeneity
n the brain may be an important factor in the capacity to optimize its overall performance. Actually, we proved that
eterogeneity at all levels enhances performance in terms of signal propagation speed and increases the spike activity in
he net, in other terms the robustness of information circulating in the brain.

In the last decades, mathematical models to study the propositions that govern cognitive abilities of the nervous
ystem, helped significantly to unveil unknown mechanisms of critical behaviors in brain activities and related neural
etwork models [3]. Additionally, the support of computational simulations describing biologically plausible neurons
nd their dynamics, validated mathematical models of artificial neural networks that aim to capture neurons’ biological
rchitecture and behavior in neuroscience and in many relevant fields [4]. In modern neuroscience, considerable
evelopment of mathematical models facilitated the realization of dynamic systems resembling the biological functioning
f the brain [5]. Among such studies, stochastic resonance, a counter-intuitive mechanism by which an embedded noise [6]
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t a finite level enhances the sensibility of a system empowering its performance, is considered to play an active role
n a variety of classes of both natural and artificially structured neural systems [7]. Furthermore, given the potential
ignificance of this phenomenon, and in light of the previous study of how random noise stimulation (heterogeneous
xonal delay) improves cognitive performance [8], this article will provide a theoretical formulation of two distinct
eterogeneity effects. The first type of heterogeneity introduced is variable distances between neurons obtained by
andomizing axonal delay. This is leading to faster information propagation speed, a phenomenon that we call stochastic
rid enhancement (SGE). The second heterogeneity tested is concerning a non-homogeneous neural model. In this case, we
ariate the neuron cell type, manipulating the Izhikevich model parameters that change the neuron’s various differential
roperties resulting in spike patterns and dynamics.
We do not have direct evidence on the real effect of heterogeneity on a biological brain, however, our simulation

sing the biological realistic spiking Izhikevich model has shown that heterogeneity enhances the number of spikes along
he whole network, and this suggests that information robustness is enhanced. Other recent prominent studies are also
ompatible with our finding, as it seems that heterogeneity gives the brain various advantages, including efficient coding,
eliability, better working memory, and other functional specialization [1]. Hereafter we will call this effect caused by the
andomness of the neuronal model stochastic neuron enhancement (SNE).

In this study firstly, we consolidate the SGE effect, already discussed extensively in a previous work [8], testing it
on multidimensional toroidal grids, secondly, we provide novel SNE tests and results and we discuss the mathematical
connection between the functional role of neural type heterogeneity and the robustness of spiking activity within a
network [9]. To implement the study of heterogeneity we choose the Izhikevich neuron model. Despite many studies
advocating the use of the LIF (leaky integrate-fire) model, the Izhikevich model is considered one of the most accurate,
but at the same time is not computationally heavy and allows to simulate of a large number of neurons [10]. The model,
throughout two dimensionless variables u and v, and four dimensionless parameters a, b, c, and d, naturally fits the
requirements to pursue the study of neural heterogeneity. In this article, therefore, we want to bring light to the role
of these two combined heterogeneities in the improvement of spiking activity and robustness of information propagating
in the neural network [11].

2. Methods

We examine the toroidal grid in two, three, and four dimensions. The construction of a 2D torus grid is realized by
connecting each neuron to its four von Neumann neighbors and connecting each edge of the grid to its opposite edge
in a cyclic manner realizing a torus that exists in a three dimensional space. This is a structure that does not alter the
topological properties of the original grid.

The 4D torus comes from the 3D grid where nodes (neurons) are connected in a similar von Neumann three-
dimensional structure, with six adjacent neighbors instead of four. The 4D torus is realized by merging the opposite
surfaces of the cube, obtaining again a toroidal network (this ‘‘torus’’ cannot be visualized in three dimensions; it is
actually a Clifford structure in four dimensions [12]. With a similar scheme, we will also realize a four-dimensional grid
resulting in a torus placed in five-dimensional space. In the following scheme we summarize the relationship between
the dimensional grid and the corresponding toroidal network.

• 2D Lattice grid H⇒ Torus in 3D space
• 3D Lattice grid H⇒ Torus in 4D space
• 4D Lattice grid H⇒ Torus in 5D space

Biologically speaking, neurons in the brain live in confined areas without specified borders [13]. Accordingly, we choose
a borderless structure as a torus to confine the network in a model which may portray the most plausible representation
of the brain. Particularly, we use the neurons model presented by Eugene M. Izhikevich [10], which accurately resembles
the spiking behavior of cortical neurons, reproducing a lot of variety of neuron spiking behaviors.

Our three-dimensional topological structure [14], is defined as a graph G = (N, C), where N(G) and C(G) are respectively
the nodes and connections of G [15], each node is connected to its six adjacent neighbors and the communication of each
node can take place in six directions: +x (east), -x (west), +y (forward), -y (back), +z (north), and -z (south).

The four-dimensional torus structure leads naturally to a von Neumann-shaped neighborhood [16] where cells are
surrounded by six inputs [17].

We chose arbitrarily an initiator neuron, which is regularly spiking due to its connection to a constant external current
of I = 10 mA that induces the network to spike for the duration of the simulation. All the other neurons in the grid are
not connected to external currents and may spike only because stimulated by spikes coming from neighbor neurons. Each
couple of nodes represents a different distance between neurons, so it characterizes a delay or the transmission time for
a spike signal to reach its neighbor. We refer to it as µ = cd + δ (cd: ‘‘central delay’’) and δ = nd × α (nd:noise delay),
where α = [(2x) − 1] ∼ U(−1, 1), and x∼ U(0, 1) being uniformly distributed random variables used to implement
the axonal propagation delay heterogeneity, the trigger of the SGE effect. Once proved this phenomenon on 2D, 3D, and
4D multidimensional grids, it will be introduced and analyzed the effect of neural heterogeneity on the overall network
spiking activity testing the SNE effect on the grid. Finally, we will consider the bonding effect of the two heterogeneities

on the network and elucidate the results and conclusions of the study.
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Table 1
The table reports the actual values of the parameters a, b, c, d used for each model of Fig. 2.
Heterogeneity of Izhikevich neuron model

Parameters RS IB CH FS LTS TC RZ

a : 0.02 0.02 0.02 0.1 0.02 0.02 0.1
b : 0.2 0.2 0.2 0.2 0.25 0.25 0.26
c : −65 −55 −50 −65 −65 −65 −65
d : 8 4 2 2 2 0.05 2

Table 2
The table summarizes the data of Fig. 7. For each of the three networks are specified the value of standard deviation
(S.D.), the average number of spikes of the network (Mean), and the interpolation line (Slope) for all the heterogeneity
values (from H:0.0 to H:1.0).
Nt.size H.:0.0 H.:0.2 H.:0.4 H.:0.6 H.:0.8 H.: 1.0

5× 5× 5× 5
S.D. 55.3 55.3 55.7 56.6 57.7 47.7
Mean 3091 3101 3340 3636 4543 6166
Slope −201 −190 −228 −231 −345 −392

7× 7× 7
S.D. 55.7 51.1 53.5 55.6 57.3 52
Mean 1104 1069 1133 1228 1445 1978
Slope −81.2 −72.7 −80.0 −91.3 −113 −144

11 × 11
S.D. 28.4 28.2 36.4 34.5 38.6 42.7
Mean 223 210 226 243 265 311
Slope −8.02 −7.25 −10.6 −10.9 −12.9 −18.3

2.1. Simulation

2.1.1. Neuron model
We used Python and the pyNEST library version 2.2 [18], to simulate spiking neurons network in continuous time

hose connections are adjustable parameters for weight and delay. The choice of a spiking neural model is extremely
mportant to efficiently structure the network task. De facto, one of the most used prototypes to describe neural
unctionality in the field of neuron science is the LIF (leaky integrate-fire) model, considered simple while implemented at
ow computational cost [19]. However, the Izhikevich one is widely recognized as one of the most powerful and accurate
odels able to simulate thousands of neurons in real-time while offering a solid accuracy to reproduce spike patterns [20].
he model offers highly plausible biological dynamics, which realistically reproduce the non-linear phenomena dynamics
aused by the increased noise level in the network, and it has an outstanding capacity to reproduce a large variety of
piking models by manipulating a few parameters. Therefore, since it naturally fits the requirements to pursue the study
f neural heterogeneity, it becomes our first choice. Izhikevich’s model, uses two dimensionless variables u and v, and

four parameters a, b, c, and d, is a two-dimensional system of ordinary differential equations which describes the time
evolution of the membrane potential v and membrane recovery u [10], described in the following equation:{

v′ = 0.04v2
+ 5v + 140− u+ I

u′ = a(bv − u)
(1)

with after the spike, a reset process is given by:

if v ≥ 30 mV →
{
v← c
u← u+ d

(2)

where v′ = dv
dt , and u′ = du

dt . The variables v and u and the parameters a, b, c and d are all dimensionless, t is the time in
illiseconds [10].
We used a Runge–Kutta method to process the Izhikevich model differential equations and a pipeline/buffer procedure

o describe the delay’s behavior within the NEST network. A weighted sum takes the presynaptic neuron’s input into
onsideration, where the weights represent the synaptic connection strength parameters. When a neuron is delayed by
specific amount of time, its signal will continue to travel down a memory pipe register long as the delay is expressed
s a number of time steps.
The parameters of the Izhikevich model describe respectfully (see Tables 1–3):

• a: time scale of the recovery variable u.
• b: the sensitivity of the recovery variable u to the subthreshold fluctuations of the membrane potential v.
• c: the after-spike reset value of the membrane potential v.
• d: The after-spike reset of the recovery variable u.
3
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Fig. 1. Four different representations of 3D Torus from a 2D grid model. The nodes are the neurons of the network; the connections are the µ
i,j
n,nk

of Eq. (4). The x-axis scales the variation of neural heterogeneity H, from 0 to 1. H:0 every neuron is identical to each other (neural homogeneity).
On the y-axis ranges the axonal heterogeneity, the axonal delay δi , ranging from 0 to the value of the central delay (cd). To the variation of δi

corresponds a different value for the connection µ
i,j
n,nk .

A: Particular situation for H: 0, and δi: 0. The network grid is regular (axonal delay is homogeneous and neurons are of the same type). It results
in having all neurons of the same type (in this case all red nodes indicate all the neurons are identical, specifically of R.S. Izhikevich type) and all
the axonal delay between them are homogeneous to the value of cd (regular 3D tours).
B: H: 1 and δi: 0. We change only the neural heterogeneity by manipulating the parameters c, d of the Izhikevich neuron model, resulting, according
to Fig. 2, on a stochastic typology of neurons model. The distance between neurons, hence, remains constant to the value of the cd, while the
different colors of each neuron correspond to a different type of Izhikevich neuron model.
C: H: 0, and δi: 1. All neurons are R.S. Izhikevich neurons, while the axonal heterogeneity provokes the axonal delay to vary between neurons, as
formalized by the Eq. (4).
D: H: 1, and δi: 1. The sketch depicts the most variable structure possible: the two heterogeneity, portraying the most plausible distribution of
neuron populations where the distance of the connection between neurons vary within a network of heterogeneous cells.

In our model we will keep a, b at constant values of 0.02 and 0.2, while the parameters c, d are heterogeneous, as in
Fig. 2, will be subject to the form:{

c = −65+ (15× x1 × x1)
d = 8− (6× x2 × x2)

(3)

0 ≤ x1, x2 ≤ 1: uniformly distributed random variables [10].
In Fig. 1 we show the resulting effects of the combined heterogeneity on a 3D toroidal model network. Where the

node’s color variation represents the neural heterogeneity, the different distances of the connections illustrate the axonal
delay heterogeneity.

2.1.2. Network structure
A natural choice of the network framework, to secure the SGE effect on a 3D lattice grid, falls in the three-dimensional

lattice von Neumann neighborhood (6-neighborhood model as in Fig. 3), where each cell is connected with its six adjacent
cells located on its north, south, east, west, in forward and back position, where the distance between nodes is calculated
with the Manhattan distance [16].
4
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Table 3
The characteristics of the multidimensional neural networks used in the simulations reported in Fig. 9.
T.D. Nt. size I w nin no mMd Paths Slope

3D 11 × 11 10 18 12 116 6 6 −1.09
4D 7 × 7 × 7 10 18 12 155 6 20 −2.05
5D 5 × 5 × 5 × 5 10 18 12 296 6 180 −3.42

Fig. 2. To different values of the parameters, a, b, c, d, correspond different types of Izhikevich neuron models as described by Eqs. (1) and (2). In
our simulation, the constant values of a, b, c, d = (0.02, 0.2, −65, 8) are congruent to a regular spiking (RS) model, while random changes of c, d
orrespond to a continuous variability of a large range of neuron models [10] such as IB (intrinsically bursting), CH (chattering), FS (fast-spiking),
TS (low-threshold spiking), TC (thalamocortical), RZ (resonator). The variability of c, d according to Eq. (3), guarantees the neural heterogeneity of
he model.

Fig. 3. In this case, the mMd from nin to no is 4. The red dotted lines represent all the possible paths with mMd, where all the others (as the blue
dotted line) have a Manhattan distance > mMd. In a 3D lattice grid, each node/neuron has six connections. The nodes on the border surface are
connected with their respective counterparts on the opposite face. For clarity the brown dotted line represents one of those cyclic connections. This
structure is equivalent to a torus in 4D space.
5
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We created 3 different networks of two, three, and four dimensions associated, respectfully, with a three, four, and five-
dimensional torus. Hence, we ran comparative simulations to analyze the results. Initially, we consider a three-dimension
matrix of 343 neurons (7 × 7 × 7) connected according to the von Neumann neighborhood model such that the surfaces
are connected with their opposite to form a toroidal structure [21]. Once we have framed the network, we configured
the neurons according to Izhikevich’s archetype to start the simulations. As we aim to focus on the effect of non-uniform
axonal propagation delay [22], we first study the model in its simplest form considering all RS (regular spiking) neurons
to be identical, where no inhibitory synapses nor thalamic currents were examined. Hereafter we will compare the results
with the same-size heterogeneous model and analyze the differences in the effect of heterogeneity.

As established in the previous study [8], the heterogeneous axonal delay (representing the variable time it takes the
spike to travel the length of the axon) µ

i,j
n,nk between two neurons n, nk is calculated at each simulation by its average

alue, that we call here central delay (cdj) and its stochastic contribution noise delay (nd)i as follows:

µ i,j
n,nk = (cd)j +

δi  
(nd)iα i,j

n,nk (4)

where i and j are the index of the loops over (cd) and (nd) respectively. In other words, j represents a particular central
delay (that is the average delay between nodes) and i represents the cd randomness level added to each of the neurons
of the grid for that simulation.

∗ α
i,j
n,nk = [(2x

i,j)− 1]
∗ (cd)j = central delay; 1 ≤ (cd)j ≤ (cd)max , j ∈ N
∗ δi = (nd)i · α

i,j
n,nk; (δi ≤ (cd)j) is the noise delay

∗ for each j: (nd)i = i (cd)jns , 1 ≤ i ≤ ns, i ∈ N where 0 ≤ xi,j ≤ 1 is an aleatory variable with uniform distribution
assigned to the connection of neuron n to nk at the i-loop and j-loop. In this way α

i,j
n,nk is always within the −1, +1

interval.

Firstly, we proceed to study the 3D lattice grid representing the network’s different (heterogeneous) axonal delay µ
i,j
n,nk .

Only one neuron called nin is stimulated by an external current I = 10 mA, as suggested by Izhikevich [10], whose spiking
activity stimulates its neighbors inducing secondary spiking to propagate along the model. We compute the propagation
speed between nin and a neuron called no representing an arbitrary output:

• f i,j
out as the time of the first spike of no.

• f i,j
in as the time of the first spike of nin.

Hence, the spike propagation delay from nin to n0 is:

∆f i,j
g = f i,j

o − f i,j
in (5)

with g being the minimum Manhattan distance (from now on referred to as mMd) from nin to no, between the two
neurons, [23]. All the ∆f i,jg of one i-loop, have the same central delay (cd)j = j which is increased at the end of one
-loop. For the same (cd)j = j, by increasing the noise (heterogeneity of axonal delay), we previously proved that ∆f i,jg
decreases. We refer to this phenomenon as the stochastic grid enhancement effect (SGE) and we expect its presence in
multidimensional models.

2.2. Grid dimensions and SGE effect

Here we want to generalize the stochastic grid enhancement on a larger scale, showing the phenomenon to appear
more prominent by increasing the number of dimensions of the network. Firstly, we discuss the number of minimum
paths with the same mMd between two random neurons in a lattice grid framed in a toroidal shape, where the mMd
from nin to no, is the number of minimum steps to reach no from nin as pictured in Fig. 3.

In a previous 2D lattice network study [8], for each neuron there were four adjacent neighbors, and for any couple of
neurons [nin; no] (initiator; output), there were a certain number of paths with the same mMd connecting the nin to no.
Given the structure of the model, the fastest way for the signal to reach the output no is in mMd steps. In two dimensions
here are only two possible pre-synaptic connections to no (as in Fig. 4(a)), since starting a path from one of the other
wo connections, will take a number steps greater than mMd.

The strength of the SGE effect depends on the number of paths with the same mMd, which increases by manipulating
he number of dimensions of the network and the nodes’ coordinates as shown in the following.

Let us consider a 3D cubic lattice (4D torus) of side ln=2 ·sl, and (nin, no) of coordinates [(x0, y0, z0); (x1, y1, z1)].
We can formulate :

X =
{
|x0 − x1| ; if : |x0 − x1| ≤ sl

(6)

ln− |x0 − x1| ; if : |x0 − x1| > sl

6
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Fig. 4. Depiction of a network in 2D and 3D. The comparison between the two networks shows how by increasing the dimension, the number of
aths with the same mMd increases accordingly. The presynaptic activity, increases as well in the network at a higher dimension, rising the chance
f the SGE effect.
n panel(a), two-dimensional grid, there are three different paths from nin to no with mMd = 3. In this situation we may have at most two presynaptic
signals s1, s2 reaching no at almost the same time and triggering the SGE effect.
In panel(b), the three-dimensional grid induces 6 different paths with the same mMd = 3 between nin and no . In this case, the larger number of
paths may let converge at most 3 presynaptic signals at around the same time, s1, s2, s3 , to no , increasing the probability for the SGE effect to
ecome relevant.

Y =
{
|y0 − y1| ; if : |y0 − y1| ≤ sl
ln− |y0 − y1| ; if : |y0 − y1| > sl

(7)

Z =
{
|z0 − z1| ; if : |z0 − z1| ≤ sl
ln− |z0 − z1| ; if : |z0 − z1| > sl

(8)

Here X, Y, Z represent the least number of steps on each dimensional axis to reach no from nin, which coincides with
he definition of the minimum Manhattan distance mMd. Therefore, we can write mMd = X + Y + Z . For example, let
s assume that after our calculation we have (X, Y, Z) = (3, 4, 5). It follows mMd = 3+4+5 = 12. It means that the least
umber of steps from nin to no is 12. Starting from nin, we may move firstly 3 steps over the x-axis, 2 steps over the y-axis,
steps on the z-axis, and finally the last 2 steps again on the y-axis. That would be an example of the path from nin to

o with mMd = 12. We are now interested to know the number of all the paths with mMd = 12. Intuitively, the solution
ay come by permuting the partitions of X, Y, and Z, and precisely is given by the multinomial coefficient [24]:

P =
(X + Y + Z)!

X !Y !Z !
(9)

P represents here the number of paths with the same mMd = X+Y+Z from nin to no in the 3D lattice grid. By keeping nin
n the same position, if we increase the number of dimensions of the grid, we may expect the number of paths with the
ame mMd to increase accordingly (as in Fig. 4).

.3. Process time τ

We investigated so far how the SGE can be boosted by the number of paths between two neurons. We investigate now
he existence and relationship of this phenomenon upon the definition of the process time τ .

Specifically, we defined:
7
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Fig. 5. Representing how the variability of the axonal delay µ, triggers the SGE effect influencing the overall network’s spiking activity. Two cases
are shown: Process time > Transmission time (panel 1., 3.) and Transmission time > Process time (panel 2., 4.). In panel 3 we see how increasing
the randomness results in a wider range of variability of µ

i,j
f ,fp from 0 ms to 50 ms, with a central value of 25 ms. In this case, µ can become smaller

han the processing time τ
i,j
fp , and positively influence the phase space of the neuron fs dynamic, provoking a faster postsynaptic response. In panel

, for a small randomness level, the variability of µ never gets below the value of τ and the SGE effect will not take action.

• Process time τ
i,j

nf : the interval from the arrival of a pre-synaptic spike to neuron nf , the processing of this input and
the resulting emission of a post-synaptic spike. Here, i and j represent the loops of the central delay (cd)j and noise
delay (nd)i.
• The axonal delay µ

i,j
f ,fp : is the time for a spike to go from neuron nf to one of its adjacent neuron nfp, explained as

in Eq. (4).
• The total transmission delay is: d i,j

f ,fp :

di,jf ,fp = µ
i,j
f ,fp + τ

i,j
f (10)

In Fig. 5 we represent schematically how the SGE effect works. The processing time τ (red line) and the transmission
ime µ (blue line). We theorize how the existence of the process time τ allows the effect to take place. While the
ransmission time µ, for any given central delay, represents the time for crossing the distance between two neurons,
represents the time the neuron takes to emit the post-synaptic spike once the pre-synaptic stimulation has arrived. The
ery existence of this mechanism allows hypothesizing that while a previous signal is being processed, (PSPs)B in nf in
he plot, in the interval τ , another spike can reach up from nf, prompting a faster emission and causing the SGE effect to
ake place.

.4. Single spike propagation

To better understand the characteristics of process time τ , we simulate a single impulse spike in a 3D grid of RS neurons.
he plot in Fig. 6 represents a simulation of 1000 ms in a 3D lattice grid network of (7 × 7 × 7) RS Izhikevich neurons
f a single spike crossing the fastest path from the input nin:12 to the output no:155 (the neuron number represents its
osition in the grid). In this simulation, the initiator neuron emits a single spike at t = t0 which stimulates its neighbor’s
eurons. This action produces post-synaptic spikes that become pre-synaptic signals toward adjacent neurons and the
rocess repeats forward across the grid.
Considering as spikes all impulses in Fig. 6 of positive membrane potential, we notice that the second spike (occurring

t the first post-synaptic neuron 61) happens approximately at time 100 ms. The next adjacent neuron 154 spikes around
ime 110 ms. The first spike does not fully propagate to the six adjacent neurons. Instead, its potential fragments in
maller PSPs along the adjoining connected neurons spread along the system. A single neuron may be reached by at most
ix PSPs at approximately the same time and, eventually, provoke a spike (green dot). Noticeably, a single impulse spike
an propagate and create the remarkable action potentials across the whole network in a 1000 ms time frame.
8
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Fig. 6. The membrane potential (vertical axis) of 6 adjacent neurons representing the propagation of a single spike in a 2D network of regular
spiking (RS) Izhikevich neurons. The central delay is 10 ms with a noise of 6.43 ms, meaning the transition time µ varies in the range (13.57;26.43)
s. The plot shows the behavior and development of the single-impulse spike (green dot) from the initiator neuron nin = 12 across the path [12,
1, 62, 111, 105, 154, 155], with 155 being the output neuron no . We can observe how the initial spiking activity at neuron 12 induces connected
eurons to spike after a brief delay of duration near the average axonal delay value (cd = 20 ms in the simulation shown).

.5. Spiking activity: RS vs heterogeneous model

Here, we analyze and compare the relationship between neuron-type randomness and the average number of spikes
ccurring on the whole network over a period of time. We study the homogeneous and heterogeneous models on the 3D
odel (4D torus) first. We run several simulations as the heterogeneity level varies from 0 to 1. Level 0 corresponds to
aving all neurons of the same type (RS Izhikevich), while, level 1 is a fully heterogeneous network of Izhikevich neurons
s defined in Ref. [10]. For all simulations, the input (initiator) nin:12 is triggered by a constant current of 10 mA. Knowing
hat by increasing the axonal delay heterogeneity the spikes propagate faster, a logical prediction is to expect the number
f spikes to increase as the heterogeneity increases. Nevertheless, by interpreting Fig. 7, we encounter a counter-intuitive
ffect as the number of spike decrease as variability rises. In the plot, we have the results for 15 different simulations
9
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Fig. 7. The number of spikes against axonal delay randomness (range 0–20 ms), when the central delay is 22 ms, for 6 values of neuronal
heterogeneity and for the three different network dimensions. The number of spikes and the standard deviation is calculated over hundreds of
neurons, depending on the size of the network. The blue dot (1) indicates full heterogeneity the yellow dot (0.0) zero heterogeneity (all RS neurons).
In all three networks, the number of spikes for H = 1.0 is almost double compared to H = 0.0. Noticeably, the number of spikes decreases as
spatial variability increases and the effect is stronger for models at higher levels of heterogeneity. The panels on the right are the linear regression
coefficient (slope, top) for the six heterogeneity levels (from 0.0 to 1.0). The mean value of the number of spikes for each heterogeneity level (spikes,
center) and the standard deviation (SD, bottom) of the respective mean.
10
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Fig. 8. The panel compares the variations in the number of spikes for each central delay and for six levels of heterogeneity. For each value of central
delay cd, the randomness level (nd)i varies in 15 steps as in Fig. 7. The number of spikes is calculated across all the neurons of the network for
the duration of the simulation. Since there are 15 simulations of different randomness levels, each point is calculated by averaging up all those 15
simulations. We range cd from 1 to 71 ms. The six models have the same constant, current I = 10 mA and synapse strength w = 18. For maximum
neuronal heterogeneity, the model shows the most robust spiking activity, we call this phenomenon stochastic neuron enhancement (SNE).

of 1000 ms each for six levels of heterogeneity. For each simulation, the central delay is fixed at the value of 22 ms,
while δi varies from 0 to 20 ms. The first simulation reports the average number of spikes of the network for a central
delay of 22 ms and maximum variability of 0 ms. This means that all the connections between neurons have the same
transition time µ: 22 ms. Additionally, being all neurons of RS type, it implies that they require approximately the same
time τ to process action potential signals. In Fig. 6, by considering µ and τ to be constant, we can discern a quite smooth
synchronization of the signals in the network. Specifically, we can expect a situation where, for instance, the signals
s1, s2, s3 of Fig. 4(b), will reach no at the same time, since µ and τ are constant. The synchronization leads the PSPs to
cluster together into no approximately at the same time and, eventually inducing a spike. On the other hand, by increasing
the axonal delay randomness, the transmission time µ changes accordingly to Eq. (4), ergo, the signals loose synchrony
and arrive at different times to no lowering the possibility for the PSPS to add up and forming a spike. By increasing the
noise, synchronization decreases and so does the number of spikes.

Interestingly, we notice while the behavior of the network’s spiking activity maintains the same shape (Fig. 7) as
central delay changes in value, the distribution rises by increasing the heterogeneity (Fig. 8). All the networks deliver
a very different amount of spikes by varying the neuronal heterogeneity for each simulation. Specifically, while the
heterogeneous axonal delay influences the distance between neurons, the neural heterogeneity is intrinsically related
to the neuron model, acting also on the variability of τ , namely, how different neurons would process a pre-synaptic
signal with different process time.

3. Results and discussion

We now compare the evidence of the SGE effect on three different networks and confirm the mathematical formulation
expressed in Eq. (9).

To verify the SGE effect from one dimension to another, the choice of nin and no must be done accordingly. As pictured
in Fig. 4, in panel (b) we chose no to be in a different plane compared to its counterpart in panel (a), where, even if the
mMd is 3 in both cases, the number of paths duplicates in the 3D grid model.
11
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Fig. 9. Comparison of regression’s slope for the three-dimensional toroidal networks 3D (blue), 4D (red) and 5D (green). The simulations show
the variation of the central delay (cd)j from 1 to 71 ms at 2 ms steps. For each delay value, we execute 40 simulations. By changing the spatial
randomness of the grid, we measure the time of arrival of the first spike. These 40 values are linearly interpolated, and the negative value of the
slope reveals the SGE effect; in other words, it shows that the interval between the first spike of nin and the first of the output no is decreasing
as the spatial heterogeneity of the grid increases. In all three models the nin is subjected to the same current I = 10 mA. All the neurons in the
network have synaptic strength w = 18. we used the Izhikevich model as implemented in pyNest. For each network grid (2D, 3D and 4D), we chose
(nin; no) to have the same Manhattan distance mMd. According to Eq. (9), by maintaining the same mMd and increasing the network dimension,
the number of paths with the same mMd will increase and strengthens the SGE effect.

We consider the three network grids (2D, 3D, and 4D) of regular spiking (RS) neurons. First, we examine the
simulation’s data for the spike timing. Depending on the dimension of the model, the heterogeneous spatial structure
of the grid reduces the time of propagation of the spiking information.

We changed the intrinsic axonal delay (cd)j from 1 up to 71 ms and tested twenty different levels of noise delay (nd)i
for each (cd)j. In Fig. 9 we compare the regression coefficient for the delay difference time ∆f in the case of three different
networks 3D, 4D, and 5D. Every single point of a line represents the slope resulting from 20 simulations with a fixed value
for the central delay, while the (nd)i varies from 0 to cd.

The negative value indicates how the signal propagates faster. The three networks have the same initiator neuron nin in
position 12, driven by a constant current of 10 mA. Across the whole network all neurons are connected with a constant
synaptic strength w = 18. However, the output no has been chosen to have the same Manhattan distance mMd from nin
in all three different models. We notice that while the dimension increases, the number of paths increases according to
(9). Respectively for the network of 2D (Torus 3D), 3D (Torus 4D), and 4D (Torus 5D), no is set up to be in position 116,
55, and 296. This is resulting, accordingly, in 6, 20, and 180 number of paths with the same mMd = 6, for each model.
oticeably, the average value of the slope decreases as the dimension rises, from −1.09 (3D Torus) to −2.05 (4D Torus)
nd −3.42 (5D Torus). This proves that the information propagates faster in networks of higher dimensions in agreement
ith our discussion leading to Eq. (9).
In other words, increasing the dimension enhances the number of paths from nin to no, and increases the number of

pikes arriving at no, resulting in a higher probability for the SGE effect to occur.

. Conclusions

We constructed three different model networks framed on a toroidal grid in multiple dimensions. This realization helps
o mimic realistic brain patches where formal limits and edges are not defined, constraining data traffic on borderless
reas. In the first part of the manuscript, we generalized what was found in previous studies related to the influence of
eterogeneous axonal delay at various dimensions, so as to secure the effect of facilitating the transmission of information
ithin a model neural network. We connect the initiator neuron nin to an external current I , forcing it to regularly
pike during the simulation time T and, consequently, to deliver signal to the adjacent nodes on the grid. The diffusion
f the signal varies according to the grid structure, based on a von Neumann neighborhood model in 2D, 3D, and 4D
imensions. In all the simulations undertaken in this study, for all the three different dimensions of the network, the
12
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Fig. 10. A comparison of the SGE effect over two models of neural heterogeneity (H = 1, blue) and regular spiking model (H = 0, R.S., red). According
to Fig. 8, the H = 1 line shows the greatest amount of spiking activity, while the R.S. is the minimum. Nevertheless, the effect acts in a similar
measure on both networks. All the models have the same constant current input of 10 mA, a synaptic strength of 18, and the same number of
neurons. Noticeable, the heterogeneity offers the most suitable model regarding robustness (highest spiking activity) while keeping the benefit of
improving spike propagation times (SGE effect).

negative value of the regression line’s slope m, Fig. 9, indicates how heterogeneous axonal delay (noise) induces a faster
propagation speed within the network. The robustness by which we find negative m as the studied models vary regarding
dimensions and size, confirms the solidity of what we called the stochastic grid enhancement (SGE) effect. We extended
the properties of this counter-intuitive result, generalizing the concept for any network dimension, showing that the
information contained in spiking activities travels faster under higher heterogeneous axonal delay randomness. Through
an analytical demonstration and several simulations, we have shown that at any dimension the increase of heterogeneity,
represented as a noise level in the axonal propagation delay, helps a signal (information) to spread within the network.

Moreover, we investigated the role of neural type heterogeneity for the same set of spiking neural networks by
manipulating the parameters c, d of the Izhikevich model throughout a uniformly distributed random variable. The level of
neural heterogeneity ranges from 0 to 1, with 0 representing a perfectly homogeneous regular spiking (RS) neural model
network and 1 a heterogeneous one as defined in Eqs. (3). In all the cases, we set synaptic weights at w = 18, and the
initiator neuron nin input current at 10 mA.

Recognizably as shown in Figs. 8 and 10, by keeping constant the initial value of current, synaptic strength, and the
number of neurons of the model, introducing cell type heterogeneity results in a large increase in spiking activity a
phenomenon that we called here stochastic neuron enhancement, SNE. The information created from the spiking activity
was abundant in heterogeneous networks since the networks were able to increase spiking activity in the same period of
time and with equal beginning values for the number of neurons, current, and synaptic strength. As a result, we conclude
that the combination of neuronal heterogeneity and heterogeneous axonal delay is a metabolically efficient brain strategy.
Heterogeneous networks have no additional cost in terms of neurons or synapses and outperform homogeneous networks
with the same order of initial parameters. This neural cell heterogeneity is therefore a biologically and computationally
effective strategy for the brain to improve signal robustness.

These findings contribute to understanding the fundamental characteristics of information transfer in the brain,
providing a conceptual model for an explanation of other paradoxical phenomena in which neural heterogeneity and
heterogeneous axonal delay appear to favor computational processes enhancing perception and other performance in
human subjects. While in this study we kept the parameter manipulation to a minimum to better clarify the effect
of heterogeneity on the information transmission, further statistical analysis such as synchronization factors, discharge
13
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requency and other possible statistical analysis as suggested to deepen the understanding of spiking information
ransmission.
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